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Abstract

Background Understanding diabetes at the molecular level can help refine diagnostic
approaches and personalized treatment efforts.
MethodsWe generated proteomic data from plasma collected from participants enrolled in
the longitudinal observational cohort studyProject BaselineHealthStudy (PBHS) (evaluated
cohort, n = 738, 27.9%of the total PBHScohort), and integrated those datawith information
from their medical history and laboratory tests to determine diabetes status. We then
identified biomarker proteins associated with diabetes status.
Results Here we identify 87 differentially expressed proteins in people with diabetes
compared to those without diabetes, 71 of which show higher expression. This proteomic
profile, integrated with clinical data into a logistic regression model, can discriminate
diabetes status with over 85% balanced accuracy.
Conclusions Our approach indicates that proteomic data can enhance diabetes
phenotyping, showing potential for marker-based stratification of diabetes diagnosis.
These results suggest that a holistic molecular-clinical approach to diagnosis might help
personalize treatments or interventions for people with diabetes.

Approximately 28million people have been diagnosed with type 2 diabetes
(T2D) in the US, with an additional 8.5 million people estimated to be
undiagnosed1. Current diagnostic criteria for diabetes and prediabetes
involve measuring blood glucose and percentage of glycated hemoglobin
(HbA1c)2 to determine whether levels are above the “normal references” of
99mg/dL and5.6%, respectively.CommonT2Dphenotypes include insulin
resistance and hyperglycemia, but, in the entirety of its pathology, T2D is a
complex disease often associated with other systemic alterations, such as
obesity, lipid metabolism alterations, hypertension, chronic inflammation,
and endothelial damage3. Therefore, identifying markers to refine the
stratification of diabetes phenotypes could, in turn, improve the persona-
lization of intervention strategies.

The Project Baseline Health Study (PBHS) is a prospective, multi-
center, longitudinal study including participants with diverse backgrounds
and representative of a wide spectrum of health states. The PBHS cohort
included participants in the United States, mainly California and North
Carolina, who were followed for up to 4 years with regular annual visits.
During the study, longitudinal data were collected, enabling multiple deep-
phenotyping modalities, includingmedical history, clinical laboratory tests,
molecular and digital profiling4. Previous research has analyzed the PBHS
cohort to identify clinical characteristics of diabetes and prediabetes5.

The objective of our analyses was to expand the clinical characteriza-
tion of T2D in the PBHS cohort by integrating proteomic and clinical
profiling to identify plasmaproteins associatedwithdiabetes.Weperformed
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Plain language summary

Diabetes is a complex disease in which
people’s blood sugar levels become too high.
People are diagnosed and monitored using
conventional blood tests. We took a group of
people, analyzed their blood proteins, and
used computationalmethods tomatch blood
protein profiles with clinical information about
who had diabetes. We could thus classify
individuals in detail; we could identify people
who may have blood protein profiles
resembling people with diabetes, even if they
donothaveadiabetesdiagnosis.Ourmethod
could be further developed to improve the
identification of people at higher risk of
developing diabetes.
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enrichment analysis, network analysis, and transcriptomics analysis to
determine which pathways were altered in participants with diabetes
compared to participants with normoglycemia. Finally, we performed
unsupervised and supervised machine learning modeling that combined
proteomic and clinical data to assess whether the integration of molecular
and clinical data could improve diabetes phenotyping compared to either
modality alone. We identify differential plasma proteomic profiles for T2D
and prediabetes states consistent with known features of T2D pathophy-
siology, based on known protein functions. The logistic regression model
resulting from combining these profiles with clinical features can dis-
criminate diabetic disease status with high accuracy without relying on
traditional molecular measures such as HbA1c. We also identify normo-
glycemic participants and participants with prediabetes with metabolic,
physical, and cardiovascular features resembling T2D.

Methods
Participants: the Project Baseline Health Study
The PBHS is a longitudinal cohort study approved by both a central Insti-
tutional ReviewBoard (theWCGIRB; approval tracking number 20170163,
work order number 1-1506365-1) and IRBs at each of the participating
institutions: Stanford University, Duke University, and the California
Health andLongevity Institute. This study includedparticipantswhomet all
PBHS eligibility criteria (key criteria were US residency and age ≥18 years),
and all participants provided informed consent. A full description of study
procedures has been previously reported4.

During the study visits, questionnaires collected participants’medical
history information (spanning multiple disease areas including immune,
metabolic and cardiovascular, mental health, neurological, infectious, and
musculoskeletal) and biological samples were collected and bio-banked.
Samples collected include whole blood, plasma, serum, stool, saliva, tears,
urine, and facial swabs. Blood and urine samples were also submitted for
standard clinical laboratory analysis, including complete blood count.
Participants also underwent echocardiography and wore a Verily Study
Watch (Verily Life Sciences, South San Francisco, California), which
recorded acceleration data via an onboard inertialmeasurement unit (IMU)
with a 30Hz 3-axis accelerometer. Data included in this analysis were
collected between 2017 and 2022. Participants were followed for up to
4 years.

Analyzable cohort
The analyzable cohort for this study consisted of 698 participants in the
PBHS with available proteomic data and who maintained the same diag-
nosis throughout the study (unless otherwise noted).

The portion of this study involving data modeling included the sub-
cohort of participants with complete clinical data available to enable the
analysis.

Availability of proteomic data. For the present analysis, we pooled
together proteomic data available from several PBHS participant subsets,
corresponding to several substudies for which first-visit plasma samples
were processed throughmass spectrometry: first, a pilot study including a
sequential set of 91 participants enrolled at study initiation. Second, a
T2D pilot substudy including 330 participants with self-reported pre-
diabetes/T2D and matched participants with normoglycemia; partici-
pants were matched 1:1 based on demographics and overall physical
health (specifically based on sex at birth, age, race, blood pressure, resting
pulse rate, respiratory rate, average daily step count); participants with
cancer, infectious or autoimmune disease were excluded from this sub-
study. Third, a liver injury substudy including 154 participants with
hepatic conditions and 1:1 matched controls, following the same
matching strategy as in the T2D pilot study; liver injury was identified as
self-reported hepatic disease, such as cirrhosis or hepatitis, or altered lab
tests, such as elevated bilirubin. Fourth and last, an exploratory substudy
including 394 participants randomly selected from the entire PBHS
cohort.

The substudies were initiated during the initial PBHS enrollment
period; thus, participants were selected based on their health status at study
start. Participants were monitored for up to 4 years, and several changes in
their health status were observed. After further clinical data review and
accounting for health status changes, the following participants were
selected for this study: 1 participant with T2D, 8 participants with pre-
diabetes and 62 participants with normoglycemia from the first pilot study;
105 participants with T2D, 49 participants with prediabetes and 93 parti-
cipants with normoglycemia from the second (T2D) pilot substudy; 32
participants with T2D, 16 participants with prediabetes and 71 participants
with normoglycemia from the third (liver injury) substudy; and 17 parti-
cipants with T2D, 37 participants with prediabetes and 247 participants
with normoglycemia from the fourth (exploratory) substudy.

Diagnosis at study start and follow-up. We integrated two sources of
information: self-reported diabetes status and results from clinical tests
for HbA1c, fasting blood glucose, fasting blood glucose (FBG), and non-
fasting blood glucose (nFBG) performed at the baseline study visit.
Participants with pre-existing diagnoses of T2D or prediabetes, including
those with HbA1c or blood glucose values outside of the disease’s clinical
range at study start, were classified according to the pre-existing diagnosis
(assuming these may reflect cases of successful disease management).
Participants without a diagnosis for T2D or prediabetes could be classi-
fied as “with T2D” or “with prediabetes” if their HbA1c or blood
glucose was in the diabetic or prediabetic clinical range at study start and
at the following yearly visit (diabetes defined as HbA1c ≥ 6.5%, or
FBG ≥ 126 mg/dL or random blood glucose [RBG] ≥ 200 mg/dL; pre-
diabetes defined as HbA1c between 5.7% and 6.4%, or FBG between 100
and 125 mg/dL)2. All participants without initial T2Ddiagnosis whowere
classified as “with T2D” hadHbA1c ≥ 6.5%. Tomonitor themaintenance
of a given diagnosis or the occurrence of progression events to T2D or
prediabetes, we followed study measurements of HbA1c and blood glu-
cose. When HbA1c or blood glucose test results shifted to the diabetic or
prediabetic clinical range for at least 2 study visits at any point, diagnoses
were updated. Self-reports of initiation of diabetes medications while on
the study were marked as progression events to prediabetes or T2D,
depending on the indication of the medication. We considered the fol-
lowing diabetes medications: metformin, pioglitazone, glimepiride,
exenatide, canagliflozin, empagliflozin, dapagliflozin, dulaglutide, gli-
mepiride, glibenclamide, glipizide, glucagon, chlorpropamide, glyburide,
sitagliptin, saxagliptin, linagliptin, alogliptin, semaglutide, liraglutide,
and insulin. With these criteria, we observed 242 participants who
developed prediabetes, 42 participants with an initial prediabetes diag-
nosis who reverted their HbA1C and FBS to normoglycemia, 37 parti-
cipants who progressed from prediabetes to T2D, and 7 participants with
normoglycemia who developed T2D. Of these, 101, 17, 15, and 4 parti-
cipants had plasma samples processed through our proteomic pipeline,
respectively.

Normoglycemic participants reporting taking diabetesmedications for
the treatment of another condition, suchas polycystic ovary syndrome,were
excluded from the analysis.

Proteomics
Experimental setup and data acquisition. Plasma was aliquoted from
whole blood samples collected in K2 EDTA tubes, and plasma samples
were processed through Verily Life Sciences’ proprietary liquid
chromatography-mass spectrometry (LC-MS) proteomic assay (For full
details, see Supplementary Methods).

Proteomic analysis pipeline. According to the experimental design,
each sample was processed as two technical replicates for each batch. The
two technical replicates within the batch were injected in randomized
non-consecutive order onto the LC-MS instrument. If the instrument
performance was degrading during a batch, more than two replicates
were processed. Custom code was used, unless specified otherwise.
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Mass spectra were stored as proprietary Thermo Fisher .raw files. The
spectra were analyzed to infer peptide and protein abundances (see pro-
cessing steps in Supplementary Methods). Overall, 289 high-confidence
protein groups were detected, with an average of 9 peptides mapping to a
protein group and a median of 4 peptides.

Plasma contamination. To take into account potential biases due to
different levels of plasma contamination at sample collection, con-
tamination indices for erythrocytes, platelets, and coagulation were
computed. Each contamination index was computed in each individual
sample by summing the expression of the proteins in each contamination
index protein signature6. Platelet and erythrocyte contamination was
computed as the ratio of the sum of platelet and erythrocyte protein
expression over the sum of all expressed proteins in each sample. Coa-
gulation contamination was computed as the ratio of the sum of all
expressed proteins over the sum of coagulation proteins in each sample.

The sample-specific contamination indiceswere addedas confounding
variables to the differential expression model.

Differential protein expression analysis
To identify differentially expressed (DE) proteins between individuals with
T2Dandnormoglycemia,webuilt a linearmodel for eachprotein.Thebatch-
corrected expression of each protein (see Supplementary Methods) was
modeled as a function of the diabetic phenotype, accounting for the following
potential confounding factors: sex, age, race, smoking status, presence of
comorbidities, statin usage, hypertension medication usage, platelet con-
tamination, erythrocyte contamination, and coagulation contamination.
Participants self-reported as never smoking, formerly smoking, or currently
smoking,whichwasmapped to a discrete variable in that order. The presence
of self-reported comorbidities was added as a single model term. Comor-
bidities were: cancer, autoimmune diseases, excluding diabetes, infectious
diseases, diverticulitis, pancreatitis, and pneumonia. The ols() function from
the statsmodels.formula.api Python package was used to build the linear
models. The p value associated with the diabetes phenotype coefficient was
adjusted for multiple testing with the Benjamini–Hochberg correction7.

In addition, to test the stability of the DE proteins to changes in the
sample composition, we built the linear models for 10 random subsets of
90% of the samples, allowing resampling across the subsets. Thus, for each
protein,we obtained 10 false discovery rate (FDR)-adjusted p values, one for
eachof the randomsubsets. Finally, a proteinwas consideredDE if theFDR-
adjusted p value was less than 0.05 across all the random subsets.

Gene ontology (GO) term enrichment. The gene ontology (GO)
annotation from January 2023was used to computeGO term enrichment
on the DE proteins. We limited the GO annotations to terms with
experimental evidence, manual and electronic annotation or inferred
from sequence or structural similarity, corresponding to the following
evidence codes: EXP (inferred from experiment), IDA (inferred from
direct assay), IPI (inferred fromphysical interaction), IMP (inferred from
mutant phenotype), IGI (inferred fromgenetic interaction), IEP (inferred
from expression pattern), TAS (traceable author statement), IC (inferred
by curator), IEA (inferred from electronic annotation), ISS (inferred from
sequence or structural similarity). Only GO terms with at least 3 proteins
represented in our data were tested for enrichment. A hypergeometric
test was performed to test the enrichment for each annotated GO term
within the biological process and cellular component namespaces.
Upregulated and downregulated proteins in individuals with T2D
(compared to normoglycemic) were tested for GO enrichment sepa-
rately. The p value was adjusted for multiple testing with the
Benjamini–Hochberg correction7 separately for each namespace and
each protein set. The list of all detected plasma proteins was used as the
background set for the hypergeometric test.

A protein could be annotated with more than one GO term. To
annotate the proteins uniquely with one GO term on a heatmap, the fol-
lowing custom GO slim terms were assigned in this order: lipid transport,

complement activation, blood coagulation, inflammatory response, and
immune system process.

Protein analyses: protein–protein interaction (PPI) networks and
tissue specificity. Protein–protein interactions (PPIs) were exported
from the STRING database v11.58. Only high-confidence interactions
were included (minimum combined score of 5009). In addition, only PPIs
between positively co-expressed DE proteins were included (Pearson’s
correlation coefficient between protein expression values across all par-
ticipantswithT2Dandnormoglycemia ≥ 0.2). The resulting PPI network
was finally filtered to restrict to a core of at least 2 degrees for each node.
This ensured a certain level of network connectivity.

Louvain’s community detection algorithm10 was applied to the final
PPI network. Each community was annotated with the custom GO slim
categories described above. The Python package networkx11 was used for
network analysis.

Weused theGenotype-TissueExpression (GTEx) database to examine
DEprotein expressionpatterns. Because somegenes inGTEx canbe specific
to multiple tissues12, tissue-specific genes encoding for DE proteins were
selected using increasingly stringent tissue-specificity thresholds (tissue-
specificity score > 3 or > 4). In addition, the tissue assignment was dedu-
plicated by assigning the gene to the tissue with the highest tissue-
specificity score.

Single-cell liver RNA-seq analysis
Single-cell RNA-seq (scRNA-seq) data obtained from the liver of healthy
donors were downloaded from the GSE185477 GEO study13. Liver cells
frommultiple healthy donors are pooled into the same dataset. The authors
provided single-cell type annotation, normalized read counts at the single-
cell level, and Uniform Manifold Approximation and Projection (UMAP)
projection values. For each DE protein expressed in liver, bulk RNA-seq
from GTEx (FPKM> 1), we computed the average Z-score of gene
expression in the liver scRNA-seq dataset scaled across the set of hepatic cell
types, namely hepatocytes, cholangiocytes, and stellate cells. UMAP values
are taken directly from the original dataset.

Clustering of participants at study start
Clustering analysiswas performedon110participantswith prediabetes, 155
with diabetes, and 467 normoglycemic, with clinical and proteomic data at
study start. Supervised principal component analysis (PCA) was performed
on filtered clinical and proteomic features before clustering (see details
below and in Supplementary Methods).

Clinical features included clinical and demographic variables (sex, age,
and race). Self-reported race categories were Asian, Black or African
American, Hispanic, white, or other. Clinical features measured from
standard blood and urine tests and vitals were manually curated to remove
redundancy and avoidmissingness. To avoid collinearity inmeasurements,
themanual curation removed results from laboratorymeasurements known
to be clinically related to or derived from each other and confirmed to be
correlated with each other in the current cohort (Pearson correlation >0.8,
additional details in Supplementary Methods).

The selected clinical featureswere concatenated to thematrix of batch-
corrected expressionvalues of variance-filteredproteins (see Supplementary
Methods), and used as input for PCA.

Different combinations of the number of principal components,
clustering algorithms, and k number of clusters were evaluated by com-
puting commonly used clustering metrics. Specifically, we tried the fol-
lowing combinations: First, a combination of 3, 10, 15, 30, or 50 principal
components, based on the percentage of variance explained by eachnumber
of components. Second, a combination of k-means clustering, hierarchical
clustering with Ward clustering and Euclidean distance, and hierarchical
clustering with average clustering and Euclidean distance. Third combi-
nation of k = {2, 3, 4, 5, 6, 7, 8, 9, 10} clusters.

The clusteringmetricswe computedwere:First,within-cluster sum-of-
squares, itmeasures the variability of the observationswithin each cluster; in
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general, a cluster that has a small sum of squares is more compact than a
cluster that has a large sum of squares. Second, Silhouette score14; mean of
theSilhouetteCoefficients for each sample; the score is boundedbetween−1
for incorrect clustering and +1 for highly dense clustering; scores around
zero indicate overlapping clusters; the score is higher when clusters are
dense and well separated, which relates to a standard concept of a cluster.
Third, the Calinski–Harabasz index15, the index is the ratio of the sum of
between-clusters dispersion and of within-cluster dispersion for all clusters
(where dispersion is defined as the sum of distances squared); a higher
Calinski–Harabasz score relates to a model with better defined clusters.
Fourth, adjustedMutual Information (MI) index16, it is an adjustment of the
MI score to account for chance; it accounts for the fact that the MI is
generally higher for two clusterings with a larger number of clusters,
regardless of whether there is actually more information shared. Fifth,
Davies–Bouldin index17, this index signifies the average “similarity”between
clusters, where the similarity is a measure that compares the distance
between clusters with the size of the clusters themselves; zero is the lowest
possible score; values closer to zero indicate a better partition.

Based on clustering performance across the different clusteringmetrics
and interpretability, we selected k-means clustering on 30 principal com-
ponents, with k = 3.

Clustering validation with orthogonal features
To evaluate if the clusters obtainedwere also related to features not included
in the clustering input feature set (not related to blood work), we examined
differences of these orthogonal features between diabetic-like and
normoglycemic-like clusters within each clinical phenotype.

Methylation age. Methylated DNA was measured using the Illumina
EPIC 850K array from DNA extracted from

frozen, stored whole blood collected at enrollment (see18 for details).
DNA methylation-derived ages were predicted using coefficients

supplied by Horvath using a linear combination of the coefficients and the
corresponding beta value in each sample19. An adjustment was made for
non-adult age, as described in the corresponding manuscript. Missing
values were filled in using a standard value provided by the authors19.

Physical activity data. As part of PBHS assessments, participants
underwent standard physical performance challenges, including 6-min
walk test, 10-m walk tests (fast pace and comfortable pace), 30-s chair
stand. Moreover, the average number of daily steps during daily living
was computed using the data collected from the Verily Study Watch20.
For each day of the week,Monday to Sunday, themedian number of daily
steps on that day of the week was computed over 90 days. Only days with
at least 720 min of watch-wearing time were included in the median
calculation. The medians were averaged to obtain an average daily
step count.

Echocardiographic measurements. Each study site performed echo-
cardiographywith quality control by theDukeClinical Research Institute
Imaging Core Laboratory. Images were analyzed according to best
practices and the American Society of Echocardiography recommenda-
tions for chamber quantification and assessment of diastolic dysfunction
(detailed methods previously published21,).

Machine learning models of type 2 diabetes
We built three T2D classification models using three different sets of input
features for 155 participants with T2D and 467 participants with normo-
glycemia who had both clinical and proteomic data: clinical only, pro-
teomics only, and clinical and proteomics combined (see details
in Supplementary Methods).

Model interpretation with SHAP values
Feature importance for the diabetes prediction model using the combined
dataset was assessed by analyzing the SHapley Additive exPlanations

(SHAP) values22 in the prediabetic population at study start. The SHAP
values for the prediabetic participants were computed from the model
trained on the entire cohort of normoglycemic and diabetic participants, as
defined above. Examining the SHAP values associated with a model can
revealwhat features are driving themodel prediction for each observation in
the dataset.

To summarize the SHAP values of the protein features, SHAP values
for groups of functionally related proteins were added together. This was
possible because of the additive nature of SHAP values22. The groups of
functionally related proteins were manually curated from GO term anno-
tation and domain expert knowledge.

Results
Study population and molecular data generation
Of2502participants enrolled in thePBHS, 174were initially excludeddue to
inconclusive reports for phenotypic assignment, and 78 due to having
conditions incompatible with this analysis (latent autoimmune
diabetes of adults, 2; type-1 diabetes, 20; history of gestational diabetes, 56)
(Table 1, Supplementary Fig. 1A–C). Additionally, 5 participants reported
developing gestational diabetes during the course of the study andwere also
excluded (Supplementary Fig. 1A–C).

Self-reported medical conditions were complemented with on-study
laboratory results to identify participants with T2D and prediabetes. Spe-
cifically, participants without a T2D or prediabetes diagnosis were con-
sidered to have T2D or prediabetes if their HbA1c or blood glucose was in
the diabetic or prediabetic clinical range at study start and at the following
yearly visit (diabetes defined as HbA1c ≥ 6.5%, or FBG ≥ 126mg/dL or
RBG ≥ 200mg/dL; prediabetes defined as HbA1c between 5.7% and 6.4%,
or FBGbetween100 and125mg/dL)2. Tomonitor the consistencyof a given
diagnosis over time, or the occurrence of progression toT2Dor prediabetes,
we followed study measurements of HbA1c and blood glucose, updating
diagnoseswhenHbA1cor bloodglucose test results shifted to the diabetic or
prediabetic clinical range for at least 2 study visits at any point (see
“Methods” for additional details). After excluding those whose diagnoses
shifted on study, the evaluable population consisted of 1915 participants,
including 1319 with normoglycemia, 335 with prediabetes, and 263 with
T2D (Supplementary Fig. 1A–C). Both the cohort with T2D and the cohort
with prediabetes generally had higher proportions of participants who were
male, older, self-reported as Black, with hypertension, and on hypertension
medication. Cohort participantswith T2D also had higher RBGandHbA1c
levels than the overall population (Table 1).

In a complementary effort, LC-MS proteomics was performed on
plasma samples collected at study start from 738 participants (Supple-
mentary Fig. 1C). Of the eligible population above, plasma samples for
proteomic analyses from the first study visit were available for 473 nor-
moglycemic, 110 prediabetic, and 155 diabetic participants. Baseline dif-
ferences between this “evaluated with proteomics” subcohort, the
originating set of T2D, prediabetes, and normoglycemia cohorts, and the
overall PBHS population were consistent throughout.

The quality of LC-MS data was assessed via commonly computed
quality metrics. In particular, we observed a median coefficient of variation
of 0.07 and an average of 20 missing proteins across all samples (Supple-
mentary Fig. 2A, B). Moreover, we observed a high correlation between
C-Reactive Protein quantified by LC-MS and by standard clinical blood test
(Spearman’s correlation coefficient = 0.96, Supplementary Fig. 2C).

Participants with T2D had upregulation in inflammation-related
proteins
To characterize the circulating proteome in participants with diabetes, we
compared protein expression between plasma samples of participants with
T2D and normoglycemia. After QC filtering (Methods), a total of 289
proteins were detected across all samples. Of these, we identified 87 DE
proteins (Fig. 1a, b; SupplementaryData 1), after adjusting for demographic
and clinical confounding variables, proteomic batch, and plasma con-
tamination, and correcting for multiple testing and stability (FDR ≤ 0.05
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across all 10 bootstrapped samples, Supplementary Fig. 3, see “Methods”).
Seventy-one DE proteins (82%) showed higher expression levels in parti-
cipants with diabetes, while only 16 (18%) had lower expression (Fig. 1c, d).
GO enrichment analysis showed that proteins more abundant in partici-
pants with T2D were involved in the complement system (odds ratios 3.1
and 3.6, and adjusted p values 0.002 and 0.004 for classical and alternative
complement activation pathways, respectively). No significant enrichment
was found for proteins that were less abundant in participants with T2D,
althoughmany of these proteins were involved in lipid transport, especially
high-density lipoproteins (HDLs) (Fig. 1b, Supplementary Fig. 4).

We analyzed PPIs from the STRING database8,23 for this set of DE
proteins. There were four main complexes in the PPI network of DE pro-
teins: two complement sub-complexes, a blood coagulation complex and an
apolipoprotein complex, consistent with the GO enrichment results
(Fig. 1c). Both upregulated (LDL) and downregulated (HDL) apolipopro-
teins were present in the same PPI community, since some of them, such as
apolipoprotein C, exchange freely between lipoprotein complexes24.

DE proteins are secreted by the liver and exhibit zonation
expression patterns
The liver plays a large role in blood protein synthesis25. Consistent with this,
nearly all (48 out of 50, or 96%) of the DE proteins with liver expression
(Fig. 2a) were also previously identified in peripheral blood secretome
analysis26. To further characterize a potential relationship of DE plasma

proteins with liver dysfunction in T2D, we investigated their spatial
expression patterns using a single-cell RNA-seq liver atlas from healthy
donors13.

Clustering reveals phenotypic profiles beyond diagnosis
We combined clinical and proteomic data to explore if we could identify
participants with diabetic features based on clinical elements and protein
abundance (that is, beyond HbA1c and blood glucose).

In particular, we focused on clinical features measured from standard
blood tests and vitals, removing highly correlated features (Supplementary
Fig. 5, “Methods”). As expected, several clinical features were significantly
associatedwith diabetes diagnosis, with the top three afterHbA1c andblood
glucose being waist circumference, body mass index (BMI), and triglycer-
ides (Supplementary Fig. 6, “Methods”). To account for technical sources of
variation in protein abundance, proteins were filtered by the proportion of
explained variance by each potential confounder (Supplementary Fig. 7,
SupplementaryMethods). PCA based on these selected clinical and protein
features showed that participants followed a gradient in the projected
UMAP space, rather than clearly defined phenotypic clusters (Fig. 3a). We
observed that the first two principal components already explained ~25%of
the variance, and the first 30 components captured over 60% of the variance
(Supplementary Fig. 8A). Then, we applied several clustering algorithms,
different numbers of principal components for dimensionality reduction
before clustering, and different numbers of clusters k to explore how

Table 1 | Demographic breakdown of study cohort

Characteristic Total PBHS
N = 2502

Evaluable, N = 1915 Evaluated with proteomics at start, n = 738

Normoglyce-
mic
n = 1319

Prediabetes
n = 335

T2D
n = 263

Normoglyce-
mic
n = 473

Prediabetes
n = 110

T2D
n = 155

Sex,
n (%)

Male 1375 (55.0) 712 (54.0) 182 (54.3) 132 (50.2) 220 (46.5) 57 (51.8) 81 (52.3)

Female 1127 (45.0) 607 (46.0) 153 (45.7) 131 (49.8) 253 (53.5) 53 (48.2) 74 (47.7)

Mean age, years (SD) 50.0 (17.2) 44.3 (16.5) 59.7 (14.5) 59.6 (12.7) 43.6 (15.3) 58.7 (13.6) 58.2 (12.4)

Age,
n (%)

18–29 398 (15.9) 319 (24.2) 10 (3.0) 5 (1.9) 112 (23.7) 1 (0.9) 4 (2.6)

30–39 451 (18.0) 317 (24.0) 28 (8.4) 18 (6.8) 110 (23.3) 11 (10.0) 10 (6.5)

40–49 411 (16.4) 232 (17.6) 42 (12.5) 40 (15.2) 93 (19.7) 17 (15.5) 28 (18.1)

50–59 442 (17.7) 186 (14.1) 75 (22.4) 60 (22.8) 76 (16.1) 25 (22.7) 36 (23.2)

60–69 399 (15.9) 145 (11.0) 77 (23.0) 76 (28.9) 55 (11.6) 28 (25.5) 49 (31.6)

70+ 401 (16.0) 120 (9.1) 103 (30.7) 64 (24.3) 27 (5.7) 28 (25.5) 28 (18.1)

Race, n (%) White 1590 (63.5) 883 (66.9) 200 (59.7) 148 (56.3) 310 (65.5) 64 (58.2) 87 (56.1)

Black/African
American

400 (16.0) 138 (10.5) 78 (23.3) 77 (29.3) 59 (12.5) 28 (25.5) 47 (30.3)

Asian 272 (10.9) 147 (11.1) 38 (11.3) 22 (8.4) 58 (12.3) 12 (10.9) 12 (7.7)

Hispanic 88 (3.5) 54 (4.1) 9 (2.7) 7 (2.7) 12 (2.5) 4 (3.6) 3 (1.9)

Mixed 70 (2.8) 45 (3.4) 4 (1.2) 3 (1.1) 16 (3.4) 1 (0.9) 2 (1.3)

American Indian/
Alaskan

31 (1.2) 21 (1.6) 2 (0.6) 1 (0.4) 6 (1.3) 1 (0.9) 0

Hawaiian/Pacific
Islander

28 (1.1) 14 (1.1) 3 (0.9) 3 (1.1) 9 (1.9) 0 2 (1.3)

Other 23 (0.9) 17 (1.3) 1 (0.3) 2 (0.8) 3 (0.6) 0 2 (1.3)

RBG, mean (SD) 97.7 (36.3) 87.4 (11.2) 93.8 (13.8) 150.3 (70.0) 88.0 (12.8) 95.7 (15.0) 153.0 (68.8)

HbA1c, mean (SD) 5.7 (1.0) 5.2 (0.3) 5.9 (0.2) 7.5 (1.8) 5.2 (0.3) 5.9 (0.3) 7.4 (1.7)

BMI, mean (SD) 28.4 (6.8) 26.8 (5.8) 29.2 (6.5) 34.3 (7.9) 27.2 (6.0) 30.7 (6.5) 34.6 (7.4)

Comorbidities, n (%) 988 (39.5) 498 (37.8) 145 (43.3) 104 (39.5) 171 (36.2) 39 (35.5) 39 (25.2)

Hypertension, n (%) 682 (27.3) 194 (14.7) 122 (36.4) 164 (62.4) 76 (16.1) 49 (44.5) 101 (65.2)

Hypertension medication, n (%) 596 (23.8) 146 (11.1) 106 (31.6) 164 (62.4) 56 (11.8) 40 (36.4) 99 (63.9)

Statins, n (%) 418 (16.7) 90 (6.8) 92 (27.5) 124 (47.1) 35 (7.4) 38 (34.5) 69 (44.5)

Summary statisticswere computed for the entire PBHS cohort and for thePBHSparticipantswith proteomic data generated fromplasma collected during the initial study start visit. Clinical andmedication
status was evaluated at study start. Comorbidities were: cancer, autoimmune diseases, excluding diabetes, infectious diseases, diverticulitis, pancreatitis, and pneumonia.
BMI body mass index, HbA1c glycated hemoglobin, RBG random blood glucose, SD standard deviation, T2D type 2 diabetes.
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unsupervised clusters relate to the clinically defined phenotypes (Supple-
mentary Fig. 8, “Methods”). K-means clustering with 3 clusters (k = 3)
resulted in good overlap between clusters and phenotypes, regardless of the
number of principal components (Fig. 3b; Supplementary Fig. 8B, C) and

exhibited a good Silhouette profile (Fig. 3c). Based on the overlap between
clusters and phenotypes, we assigned “normoglycemic-like”, “diabetes-like”
and “intermediate” cluster labels (Fig. 3d). Interestingly, 105 (22%) and 178
(38%) participants with clinically defined normoglycemia were grouped

Fig. 1 | Differentially expressed proteins between diabetic and normoglycemic
participants. a Volcano plot highlighting differentially expressed proteins. The x-
axis refers to the phenotype-associated coefficient in the linear model for each
protein. All samples are considered to compute the beta coefficient. b Heatmap
showing the Z-score of batch-corrected expression of DE proteins. Hierarchical
clustering was obtained with Euclidean distance and complete linkage. c PPI net-
work of co-expressed DE proteins after 2-core filtering. Communities are detected
with the Louvain algorithm. Nodes are colored based on the selected GO Slim. The
border of the node is colored based on the assigned community. Circles: higher in

T2D; Triangles: lower in T2D. d Expression of DE proteins between diabetic and
normoglycemic individuals with normal weight. Expression is scaled to normo-
glycemic median expression; line bars extend to ±1.5× interquartile range (default
seaborn boxplot parameter). [Sample sizes: Normal weight, n = 231 {Norm, 201;
PreDM, 19; DM, 11}; overweight, n = 226 {Norm, 143; PreDM, 45; DM, 38}; obese,
n = 275 {Norm, 123; PreDM, 46; DM, 106}]. DE differentially expressed, DM dia-
betes mellitus, FDR false discovery rate, GO gene ontology, Norm normoglycemic,
PPI protein–protein interaction, preDM prediabetic, T2D type 2 diabetes.
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with the diabetes-like cluster and to the intermediate cluster, respec-
tively (Fig. 3d).

To investigate which proteomic features are associated with the clus-
ters, wewere particularly interested in proteins thatmight already be altered
in some, potentially undiagnosed, participantswithnormoglycemia.Within
normoglycemic participants, we performed differential expression of
plasma proteins between participants assigned to the normoglycemic-like
and diabetes-like clusters. Out of theDEproteins identified above, we found
48 proteins, most of which were overexpressed in plasma samples of par-
ticipants with normoglycemia assigned to the diabetes-like cluster (FDR ≤
0.05, |coefficient| ≥ 0.1, Fig. 3e). Many of these proteins are involved in
immune response, which might signal higher inflammation in a subset of
normoglycemic participants.

Clusters are also associated with differences in physical per-
formance and echocardiogram
To help demonstrate the potential clinical relevance of the clusters, we
examined differences between the cluster groups at the metabolic, physical
performance, and cardiac health level within each phenotype.We looked at
the distribution of metabolic, physical performance and cardiac features
across phenotypes and clusters for each sex, although tests for statistical
significance were performed considering the two sexes together because of
limited sample size (Fig. 4; Supplementary Fig. 9). Of these, biological age,
predicted from DNA methylation assay, physical performance features,
excluding pulse rate, and echocardiogram-derived features were not part of
the clustering input features, thus representing an orthogonal validation to
the cluster assignment.

Fig. 2 | Transcriptomics analysis of DE proteins in the liver. a Distribution of
tissue-specific DE proteins at the transcriptional level in the GTEx dataset. b Gene
expression of DE proteins in scRNA-seq data from hepatocytes from different
regions of the liver. Dot color is proportional to the scaled, normalized gene
expression values. The size of the dots is proportional to the proportion of cells of a

given type expressing the gene. c UMAP of selected DE proteins showing their
zonation patterns of gene expression13. Sample size: experiments in 50259 samples.
chol cholangiocyte, DE differentially expressed, dedup duplicates removed, GTEx
Genotype-Tissue Expression Project, hep hepatocyte, TS transcriptional, UMAP
Uniform Manifold Approximation and Projection.
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Several metabolic features were significantly different across cluster
groups. HbA1c had clinically minor, but statistically significant, differences
between cluster groups especially within the T2D phenotype, suggesting
that the proteins used to assign cluster groupsmay provide some additional
value for further differentiating diabetes subtypes (Fig. 4a; Supplementary
Fig. 9A). Highly significant differences in BMI and chronological age were
observed between participants with normoglycemia assigned to the
normoglycemic-like and diabetes-like clusters (Fig. 4a). We also observed
significant trends in methylation age and systolic blood pressure within the
group of patients with normoglycemia, where participants in the diabetes-
like subgroup were older and had higher systolic blood pressure than in the
normoglycemic-like subgroup (Fig. 4a).

Features associated with physical performance were also significantly
different between participants classified as diabetes-like and normogly-
cemic-like, especiallywithin the normoglycemic group (Fig. 4b). Since pulse
rate was the only one of the physical performance features used for clus-
tering, this finding suggests that the additional clinical and molecular

markers of diabetes we identified might also be related to physical perfor-
mance overall. The average daily step count from the Verily Study Watch
was higher for participants with T2D in the normoglycemic-like subgroup
compared to those in the diabetes-like subgroup, albeit not sig-
nificantly (Fig. 4b).

Finally, since diabetes is often associated with cardiovascular
comorbidities27, we compared the distribution of features derived from
echocardiogram images between cluster groups for each phenotype. We
focused on measurements related to left ventricular size and mitral valve
blood flow, since alterations in these have been previously reported in
patients with diabetes28. Indeed, left ventricular mass and left ventricular
septal thickness were significantly higher in participants in the diabetes-like
normoglycemic subgroup compared to the normoglycemic-like normo-
glycemic subgroup (Fig. 4c). This could be a signof ventricular hypertrophy,
which is associated with hypertension29 and is common in clinically diag-
nosed T2D patients30. Measurements of mitral valve blood flow were sig-
nificantly different in participants in the diabetes-like normoglycemic

Fig. 3 | Clustering analysis of diabetic, prediabetic, and normoglycemic parti-
cipants based on clinical and proteomic data. UMAP embeddings of selected
proteins and clinical features after PCA, colored by diabetic status (a) and k-means
cluster labels (b). c Silhouette profile of participants assigned to three clusters with
k-means clustering on proteomic and clinical data projected in a 15-dimensional
space with supervised PCA. d Number of participants assigned to each cluster, by
diabetic status, colored by relative distribution across diabetic status within each
cluster. e Normalized expression of DE proteins between normoglycemic and

diabetic participants and between participants assigned to the normoglycemic-like
or the diabetic-like clusters. DE proteins are filtered at FDR ≤ 0.05 and absolute
coefficient ≥ 0.1. Participants are sorted by cluster, diabetic status, BMI, diagnosis,
and age, in this order. Sample size, n = 732. BMI body mass index, DE differentially
expressed, DM diabetes mellitus, FDR false discovery rate, Norm normoglycemic,
PCA principal component analysis, preDM prediabetic, UMAP Uniform Manifold
Approximation and Projection.
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subgroup compared to the normoglycemic-like subgroup: mitral valve E/A
ratio and septal peak e’ velocitywere lower,whilemitral valve E/A ratio peak
was higher (Fig. 4c).

Clinical and proteomic features combined best discriminate
diabetes status
Having observed significant differences at the clinical and molecular
level between participants with T2D and normoglycemia, we sought to
compare the ability of different feature sets to differentiate T2D from
normoglycemia without using HbA1c or blood glucose in the models
(these were initially used to refine the clinical diabetes phenotype and
might lead to inflated performance of anymodel).We built threemodels
using three sets of features: clinical features only, proteomic features
only, and clinical and proteomic features combined (Supplementary
Fig. 10A; “Methods”). We trained a ridge-logistic regression model on
participants with normoglycemia (n = 467, 77%) and T2D (n = 155,
23%)with clinical and proteomic data to discriminate diabetes status in a
repeated cross-validation setting for hyperparameter tuning (Supple-
mentary Fig. 10B), and evaluated the performance using repeated nested
cross-validation on the same dataset31 (Supplementary Fig. 10C). To

address the high data dimensionality, feature selection was performed as
a preprocessing step inside the cross-validation pipelines for the pro-
teomics only and combined datasets, with the number of selected fea-
tures being a hyperparameter to tune (Methods). Clinical features were
already filtered by excluding highly correlated features as described
(“Methods” and Supplementary Methods).

We compared model performance between the datasets by testing the
differences across several performance metrics within the repeated nested
cross-validation setting (Fig. 5a). The distribution of model performance
across several metrics was similar between themetrics computed within the
repeated cross-validation and the repeated nested cross-validation settings
(Fig. 5a).Themodel using the combineddataset performedbest consistently
across all the performance metrics, except for precision (Fig. 5a). In this
context, precision, also called positive predictive value, measures the pro-
portion of patients actually clinically defined as “with T2D” within the
overall group of those classified “with T2D.” Therefore, lower precision
would imply more individuals without T2D were classified as having T2D.
This is consistent with our hypothesis that incorporating additional protein
biomarkers could increase the resolution of T2D subtypes over the current
clinical diagnosis of T2D.

Fig. 4 |Differences in external features betweenparticipantswith normoglycemia
assigned to different clusters. FDR-adjusted p value comparing features between
normoglycemic-like and diabetic-like clusters for each observed phenotype: ^:
0.01–0.05; *: 0.001–0.01; **: 0.0001–0.001; ***: <0.0001 (Mann–Whitney test; full
series of exact p values in Supplementary Data 3). Because of sample size, female and
male participants are pooled together for testing; line bars extend to ±1.5× inter-
quartile range (default seaborn boxplot parameter). Features are distributed into
three main groups based on feature type: a metabolic features [Sample numbers:
HbA1c, n = 467; Random Blood Glucose, n = 467; BMI, n = 467; Systolic Blood

Pressure, n = 467; Age, n = 467; Biological Age, n = 438]; b physical performance
features [Sample numbers: Pulse, n = 467; 6-min Challenge, n = 441; 10-m Chal-
lenge, Fast Pace, n = 399; 10-m Challenge, Comfort Pace, n = 392; 30-sec Chair-
Stand Challenge, n = 459; AverageDaily Step Count, n = 380]; and c derived features
from echocardiogram [Sample numbers: Left ventricular Inter-ventricular Septal
Thickness, n = 452; Left Ventricular Mass, n = 452; Mitral Valve E/A Ratio, n = 454;
Mitral Valve E/A Ratio Peak, n = 454; Septal peak e’ Velocity, n = 375; Mitral Valve
E/e’ Ratio, n = 373]. BMI body mass index, FDR false discovery rate, HbA1c per-
centage of glycated hemoglobin.
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Fig. 5 | Machine learning classification of T2D. a Performance metrics of a ridge-
logistic regression model discriminating diabetic status. Performance metrics are
computed for each repeated CV (repeated) or for each repeated nested CV (nested)
iteration. Differences between performance metrics of models trained with different
datasets are tested with a one-sided Mann–Whitney test, comparing the con-
catenated datasets to clinical and proteomics only, correcting for multiple testing.
Adjusted p value legend: ^: 0.01–0.05; *: 0.001–0.01; **: 0.0001–0.001; ***: <0.0001
(full series of exact p values in Supplementary Data 3) {Sample size: 10 ML experi-
ments}. b Confusion matrix of diabetes classification in prediabetics and cluster
labels {Sample size: n = 110}. c Number of samples classified as diabetic where the
feature has the highest SHAP value. Red: protein is DE and overexpressed in dia-
betics, Blue: protein is DE and underexpressed in diabetics. d Features contributing

to diabetes classification in participants with prediabetes, divided by cluster
assignment. Ten participants with prediabetes classified as normoglycemic are also
shown as controls. Circle size is proportional to the positive SHAP value for each
participant and feature. Circle color is proportional to the feature value scaled across
all participants with proteomic data {Sample size: n = 39}. Black/AA Black/African
American, BMI bodymass index, chol cholesterol, clin clinical, concat concatenated,
CV cross-validation setting, DM diabetes mellitus, hdl high-density lipid, ldl low-
density lipid, mcv mean corpuscular volume, ML machine learning, norm normo-
glycemic, preDM prediabetic, prot proteomic, prot-complement protein-comple-
ment, ROC AUC receiver operating characteristics area under the curve, SHAP
SHapley Additive exPlanations, T2D type 2 diabetes, Und undecided.
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To understand the relationship between diabetes classification and
cluster assignment, and to inspect furtherwhich features are contributing to
diabetes classification at the individual level, we applied the model selected
with repeated cross-validation using the combined dataset to discriminate
diabetes status for 110 participants with prediabetes throughout the study.
Of these, 29 (26%)were classified “with T2D” by themodel with probability
higher than 0.6, while 70 were classified “with normoglycemia” with
probability lower than 0.4 (Fig. 5b). Most of the participants classified “with
T2D” were assigned to the intermediate or the diabetic-like clusters, with
proportionally more participants assigned to the diabetic-like cluster,
although not significantly (Fig. 5b).

To gainmore insights into which features are contributing themost to
discriminate diabetes status, we computed the SHAP values22 for all the
features and counted how many times a feature had the highest ranking
SHAP value across the 29 participants classified with T2D (Fig. 5c).

To investigate feature contribution at the individual level we examined
the SHAP values22 for the 27 participants with prediabetes classified “with
T2D” and 10 participants with prediabetes classified “with normoglycemia”
with the lowest classification probability as control (Fig. 5d). Expectedly,
known risk factors for diabetes, such as BMI, age and blood pressure, were
positively contributing to T2D classification for some, but not all, individuals
(Fig. 5d). Lipidmeasurements fromastandard lipidpanelwere also associated
with T2D classification. Specifically, triglycerides were positively contributing
to T2D predictions, while HDL and total cholesterol were negatively con-
tributing to diabetes predictions. Similarly, we noticed that lowermagnesium
and chloridewere also contributing toT2Dpredictions, withmagnesium and
chloride deficits in T2D patients having been reported before32,33.

Leveraging the additive nature of SHAP values22, we computed
participant-level aggregated SHAP values for groups of functionally related
proteins (see Supplementary Table 1 for the manually curated list of
aggregated proteins). Consistently, with the differential protein expression
results, complement, coagulation and LDL transport-related proteins
showed positive contribution to diabetes classification in most participants
with prediabetes, while HDL-related apolipoproteins showed negative
contribution to diabetes classification in some participants with prediabetes
(Fig. 5d). We also noted positive contributions to diabetes predictions for
individual proteins, such as attractin protein (ATRN), which is involved in
immune cell signaling34, and PIGR, which is involved in inflammatory
response and hepatic malignancy35, and negative contributions for other
individual proteins such as sex hormone-binding globulin (SHBG), whose
levels have been shown to be inversely associated with diabetes risk36 and
adiponectin (ADIPOQ), also inversely associated with diabetes risk as well
as obesity and insulin resistance37.

Finally, whereas we could appreciate the same proteomic and clinical
features associatedwithT2D acrossmultiple participants, examining SHAP
values at the participant level highlighted how the contribution of each
feature to diabetes classification can vary between individuals. For example,
qualitatively inspecting Fig. 5d, we could observe some people classified
“with T2D” because of their high BMI and inflammatory markers, whereas
for others it was their age and higher triglycerides, or their high inflam-
matory markers and lipid dysregulation.

Discussion
T2D, and metabolic disorders more broadly, are a complex set of diseases
with varying pathological mechanisms and comorbidities across indivi-
duals, including obesity and insulin resistance. Current T2D diagnostic
tools, such as HbA1c and FBG, rely on established thresholds to define
normoglycemic, prediabetic, and diabetic phenotypes. Characterizing
additional biomarkers fromaccessible tissues, suchasblood, that can further
stratify these phenotypes would be relevant across several applications,
including identifying individualswho canmost benefit earlier treatments on
in their clinical course, such as treatment with GLP)-1 agonist therapeutics
(currently limited in their availability), and individualswhoare athigher risk
for developing diabetes sequelae, who may benefit from more intensive
monitoring.

This analysis of a PBHS subcohort has identified differential plasma
proteomic profiles for T2D and prediabetes states, which could enable a
more refined stratification. Both based on their known functions and the
direction of their perturbation in disease, the proteins in these profiles are
consistent with known features of T2D pathophysiology. Moreover, the
combination of these profiles with clinical features allowed the development
of a logistic regressionmodel that could discriminate diabetic disease status
with high accuracy without relying on traditional molecular measures such
asHbA1c.Our clustering/model also identifiednormoglycemicparticipants
and participants with prediabetes that exhibit metabolic, physical, and
cardiovascular features that resemble T2D, suggesting that our approach
may be useful for further patient stratification and risk management.

This typeof analysiswas enabledby the availabilityof a unique research
resource such as the PBHS cohort, consisting of deeply phenotyped indi-
viduals, both healthy and spanning multiple disease areas, including dia-
betes. The collectionofmultiple types of data, ranging fromclinical todigital
and molecular profiling, allows for an integrative characterization of dis-
eases. This is particularly valuable for complex conditions, like T2D.

As part of PBHS, we generated one of the largest proteomic datasets,
consisting of almost seven hundred individuals with a range of dysglycemia,
including participants with diabetes, prediabetes, and normoglycemia.
Comparing plasma proteins in people with diabetes and normoglycemic
individuals revealed that inflammatory and blood coagulation markers are
overexpressed in people with diabetes. This is consistent with the emerging
role of systemic inflammation in thepathophysiology ofT2Dandassociated
metabolic disorders, which has generated increasing interest in inflamma-
tion as a target for intervention38.

Proteins negatively associatedwithT2D, such asADIPOQ, SHBG, and
APOM, have also been reported in several other large-scale proteomic
studies as negatively associatedwith obesity39, newly diagnosedT2D39,40, and
incident T2D41–43. A few complement proteins that were positively asso-
ciatedwithT2D, such asCFH,C1S, andC5,were also shown to be positively
associatedwith obesity39 andT2Drisk41–43. This analysis, however, identified
complement proteins and apolipoproteins positively associated with T2D
beyond previous proteomic studies.

The complement system, originally viewed as a supportive first line of
defense againstmicrobial invaders, is increasingly being studied for its role in
the initiation and progression of metabolic disorders, including obesity,
insulin resistance, andT2D44.Many individualswithT2Din thePBHScohort
were overweight or obese, which contributes to the overexpression of
inflammatory markers in plasma, but we found that some complement
proteins, including component 3, complement factor B and complement
factor I,were alsooverexpressed inparticipantswithT2Dandnormalweight.
Our results identifying more complement proteins may be explained by the
narrower focus of previous studies, with statistical models especially focused
on identifying biomarkers of T2D incidence corrected for BMI41–43.

The liver (mainly hepatocytes) is responsible for the biosynthesis of
about 80–90% of plasma complement components44. We found that, ana-
tomically, most of the DE proteins in this study were liver-centric, a finding
largely consistent with results of previous transcriptional analyses of
microdissected liver tissue that reported overexpression of immune-related
genes in the zone closer to the central vein23 and pronounced zonation of
active complement gene transcription, specifically in periportal and inter-
zonal hepatocytes13. Yet, some genes that were detected in liver biopsies
fromGTExwere not detected in the single-cell dataset, for example APOC2
and APOC4, both of which respond to metabolic cues in the liver by acti-
vation of transcription factors and nuclear hormone receptors45. This may
bedue to these genesbeingexpressedbelow thedetection limit in single cells.
Another explanation could be that these genes are detected in only some
GTEx samples from donors with pre-existing conditions, such as diabetes.

Additionally,we found that proteins involved in blood coagulation and
hemostasis were also overexpressed in the plasma of participants with T2D.
Examples of these proteins included fibrinogen subunits alpha (FGA), beta
(FGB), gamma (FGG), plasminogen (PLG), and plasmin inhibitor
(SERPINF2)46. Overexpression of hemostatic proteins in conjunction with
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overexpression of inflammatory markers could represent a response to
endothelial cell damage in blood vessels, as the metabolic burden of T2D,
including insulin resistance, hyperglycemia and release of excess free fatty
acids, along with other metabolic abnormalities affects vascular wall by a
series of events including endothelial dysfunction, platelet hyperactivity,
oxidative stress and low-grade inflammation47. Indeed, it has been suggested
that T2D and/or other cardiometabolic diseases can each cause reversible
microvascular injurywith accompanyingdysfunction,which in timemayor
may not become irreversible and anatomically identifiable disease48.

Altogether, the physiological observations related to the DE proteins
suggest that the liver zone close to the central vein might be related to
immune response and to overall inflammation, based on the signals from
complement genes. Additional multi-omics studies can help elucidate the
interrelation between T2D and liver dysfunction, particularly metabolic
dysfunction-associated steatotic liver disease (previously known as
NAFLD), including steatohepatitis (MASH; previously known as
NASH)49,50; and how they might be linked through inflammatory
mechanisms such as complement activation51.

Clustering analysis of participants with normoglycemia, diabetes, and
prediabetes based on clinical and proteomic features showed that 10% of
normoglycemic participants had a clinico-molecular profile that resembled
that of participants with T2D. At the proteomic level, these participants,
mostly overweight and obese, consistently showed elevated levels of
inflammatory and blood coagulation proteins. This suggests thatmeasuring
the presence of inflammatory and hemostatic pathways in plasma might
help stratify within groupswith seemingly similar levels of glycemic control.
Participants such as these, normoglycemic by clinical standards but strati-
fied closer to those with T2D, might be at high risk for diabetes, supporting
the need for a holistic phenotypic assessment to properly diagnose diabetes
or general metabolic dysregulation. Furthermore, normoglycemic partici-
pants in the diabetes-like cluster had, on average, poorer physical perfor-
mance than the other normoglycemic participants and altered
echocardiogram readouts indicative of left ventricular hypertrophy, which
may also be linked to hypertension52. Somewhat conversely, the findings
regarding physical activity levels recorded viawearable device indicated that
participants with T2D in the normoglycemic-like subgroup, that is, with
lower inflammatory markers, were more physically active.

In addition, several of our echocardiographic-related observations are
consistent with prior reports establishing a relationship between echo-
cardiographic abnormalities and T2D, particularly, abnormalities related to
left ventricular size and mitral valve blood flow53,54.

These results demonstrate the potential of utilizing proteomicmarkers
alongside clinical features for improved T2D stratification. Building upon
this work, future studies might incorporate additional metabolic measure-
ments for a more comprehensive understanding of diabetic subtypes and
other conditions leading to glycemic dysregulation. For example, oral glu-
cose tolerance tests (OGTTs), C-peptide measurements, and insulin sensi-
tivity testsmight informon the presence of other conditions, such as insulin
resistance and beta cell dysfunction, and explore how protein features
cluster with these distinct pathophysiologies. Indeed, lack of OGTT mea-
surements and other markers of glycemic excursion, for example, from
continuous glucose monitor data, is a limitation of the present study, as it
would have allowed for further characterization of those participants with
normoglycemia showing diabetic-like proteomic and clinical profiles.

Finally, we trained a machine learning model to discriminate diabetes
status based on clinical and proteomic features and applied it to participants
with prediabetes. Themodel trained on both clinical and proteomic features
combined performed better than the models trained on clinical or pro-
teomic features alone, achieving over 85% balanced accuracy. This perfor-
mance is consistent with other clinical and/or molecular diabetes
classifiers55,56. To investigate the contribution of each feature to the model
classification, we applied the model to participants with prediabetes and
examined the SHAP values, which quantify how much a feature is con-
tributing to diabetes classification for each individual. Consistent with the
rest of the analysis, many participants with prediabetes who were classified

as “with T2D” by the model showed elevated levels of complement and
hemostatic proteins. However, differences in feature contribution between
individuals could also be appreciated, emphasizing the importance of
assessing metabolic disorders in a holistic and personalized manner.

Despite revealing insights into the clinico-molecular characterization
of T2D, we acknowledge some limitations of the study. Consistent with the
complexity of diabetes and the known interrelationship between T2D and
other metabolic disorders (like obesity, hypertension, or hypercholester-
olemia), comorbiditieswere alsoobserved in thePBHScohort. PBHSwas an
observational study that was not designed to investigate factors associated
with diabetes independently of other metabolic conditions. While the
analysis was adjusted for demographic factors andmedications used to treat
hypercholesterolemia and hypertension, we did not adjust for other factors,
such as BMI, because its known association with T2D would have reduced
the power of the analysis. Similarly, at the time of this analysis, the follow-up
time for participants in the PBHS was less than 4 years, relatively short to
monitor the development of T2D; other studies designed to assess the risk of
developing diabetes have analyzed more than 10 years of clinical records42.
Moreover, participants engaged in the PBHSmight have taken the initiative
of medication and lifestyle changes that altered their metabolic status.
Therefore, we focused our analysis on data from the initial visit of the study,
and the machine learning model is a T2D classifier rather than a T2D risk
predictor.Additionally, we point out that because of the heterogeneity in the
T2D phenotype, the metabolic alterations observed in normoglycemic
participants, and the potential confounding effect of disease treatment,
together with the already mentioned incomplete fasting blood glucose
measurement and the lack of OGTT results, the diagnosis to train the
machine learning model and evaluate its performance is imperfect. This,
together with the fact that the current diagnostic criteria for diabetes are
sometimes not enough to correctly diagnose the disease57, can lead to noisier
model training and inexact estimates of performance. For instance, whereas
lower levels of HDL are reportedly observed in T2D patients58, higher total
cholesterol is observed in T2D patients59. Our ML model was potentially
associating lower levels of total cholesterol with diabetes predictions because
of statin use, prescribed to treat hypercholesterolemia. Similarly, the sub-
stantial overlap between T2D diagnosis and use of T2D medications pre-
vented us from dissecting the impact of T2D medications on T2D
classification. Finally, the findings herein were derived and evaluated within
a single cohort, so further studies in independent cohorts will be an
important step toward clinical application.

In conclusion, we have shown how a large-scale clinical cohort of
deeply phenotyped participants across a health spectrum can be the source
for integrative analyses that explore multiple layers of a complex disease.
This holistic approach examines clinical and molecular features for each
individual. In this case,wehave presented a deepmolecular characterization
of the T2D continuum at the individual level, identifying differential pro-
teomic profiles in those with normoglycemia, prediabetes, and T2D con-
sistent with known pathophysiologic features of the disease. These results
could serve as a foundation for further studies evaluating the utility of these
molecular signatures in identifying patients at the highest risk for severe
outcomes, as well as with the greatest likelihood to respond to specific
interventions in a growing therapeutic arsenal.

Data availability
PBHS data cannot be made available directly on public repositories due to
the terms of consent for the study (which required any specific data access to
be approved by the study governance). Deidentified PBHS data corre-
sponding to this study are available upon request for the purpose of
examining its reproducibility. Interested investigators should direct requests
to jsaiz@verily.com. Requests are subject to approval by PBHS governance.
Source data for the graphs and charts in Figs. 1–5 in the main manuscript
can be found in the file Supplementary Data 2.
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