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Abstract

Background: Multiple sclerosis (MS) is an autoimmune condition of the central
nervous system with a well-characterized genetic background. Prior analyses of MS
genetics have identified broad enrichments across peripheral immune cells, yet the
driver immune subsets are unclear.

Results: We utilize chromatin accessibility data across hematopoietic cells to identify
cell type-specific enrichments of MS genetic signals. We find that CD4 T and B cells
are independently enriched for MS genetics and further refine the driver subsets to
Th17 and memory B cells, respectively. We replicate our findings in data from
untreated and treated MS patients and find that immunomodulatory treatments
suppress chromatin accessibility at driver cell types. Integration of statistical fine-
mapping and chromatin interactions nominate numerous putative causal genes,
illustrating complex interplay between shared and cell-specific genes.

Conclusions: Overall, our study finds that open chromatin regions in CD4 T cells and
B cells independently drive MS genetic signals. Our study highlights how careful
integration of genetics and epigenetics can provide fine-scale insights into causal cell
types and nominate new genes and pathways for disease.

Background
Multiple sclerosis (MS) is an immune-mediated neurodegenerative disease character-

ized by demyelinating focal lesions in the central nervous system (CNS) [1]. Despite

the CNS being the target of autoimmunity, there is extensive evidence from basic sci-

ence models and human studies that dysregulation of the peripheral immune compart-

ment is key for disease manifestation and progression [2]. MS has long been regarded

as a T cell-mediated disease, with several T cell subpopulations implicated [3, 4]. More

recently, other peripheral immune cell populations, most notably B cells, have also

been shown to drive disease pathogenesis [3, 5]. Moreover, immune-modulating
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therapies targeting B cells have been demonstrated to be remarkably effective in treat-

ing patients with MS [6, 7].

MS has a strong genetic component and is characterized by a polygenic architecture.

To date, over 200 independent genetic variants have been associated with MS risk, the

vast majority of which are common variants with small effect sizes on disease risk [8,

9]. Prior studies have shown enrichment of GWAS target genes in the peripheral im-

mune system, but it is unclear exactly which cell types within the peripheral immune

system drive these observed enrichments of genetic signals.

Human genetics has emerged as a powerful tool for probing the underlying biology

of a disease [10]. The identification of genes and pathways prioritized by GWAS associ-

ations is not constrained by our prior knowledge of disease mechanisms and can there-

fore identify novel biological mechanisms. However, a key challenge for translating

GWAS findings into biological insights is that most associations are noncoding in na-

ture and likely act by modulating regulatory elements to mediate gene expression [11,

12]. Identifying the causal gene at these GWAS signals can be challenging since it is

usually unclear which gene a given regulatory element regulates [10, 13, 14]. A key step

in translating genetic associations into biological mechanisms is identifying the cell

types in which GWAS variants act and the genes they modulate. To help understand

the function of disease-associated variants, genetic associations can be intersected with

orthogonal epigenetic and gene expression data [12]. As the epigenetic and gene ex-

pression landscape differ from cell type to cell type, examining the enrichments of

GWAS data on these orthogonal datasets can identify specific cell types that may be

implicated in disease pathogenesis [15, 16].

We and others have previously reported a strong enrichment of MS GWAS variants

in regulatory regions of multiple cell types of the peripheral immune system [8, 9, 15,

17]. However, it has yet to be determined if these enrichments are driven by shared

regulatory mechanisms common to many immune cell types, or whether different

mechanisms are present in distinct immune cell populations. To address this gap, we

performed detailed analyses of the enrichment of MS GWAS variants in the peripheral

immune system to identify cell populations that independently mediate the effects of

MS GWAS variants on disease risk.

Results
MS GWAS associations are enriched in progenitor and terminal peripheral immune cells

To identify the causal cell types that uniquely and independently contribute to MS

pathogenesis via mediation of genetic effects, we leveraged bulk ATAC-seq data from

16 flow-sorted hematopoietic progenitor and terminal cell populations isolated from

human peripheral blood or bone marrow [18–20]. These cells represent progenitor and

terminal populations from across the hematopoietic tree, enabling investigation of MS

GWAS enrichments broadly and across stem, progenitor, and mature cell populations

(Fig. 1A). ATAC-seq data were processed, and open chromatin regions (OCRs, i.e.,

ATAC-seq peaks) were identified as previously described [18, 21]. We applied stratified

LD SCore regression (LDSC) [16, 22] to estimate the enrichment of MS GWAS in

OCRs from each of the 16 hematopoietic cell types. LDSC has the distinct advantage in

that it leverages the genome-wide polygenic signal in the GWAS summary statistics
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rather than selecting variants based on p-value thresholds or fine-mapping posterior

probabilities.

Applying LDSC, we observed strong statistically significant enrichments across all

hematopoietic cell populations, even after correcting for multiple hypothesis testing

(Bonferroni-corrected p-value threshold of 3.13×10−3) (Fig. 1B; Additional file 1, Table

S1). The strongest enrichments for MS GWAS were observed in OCRs from CD4 T

cells (enrichment p-value = 1.47×10−18), CD8 T cells (p-value = 4.00×10−18), and B cells

(p-value = 3.27×10−15); reflecting their known and emerging roles in MS pathogenesis

and as targets of treatment [1, 3, 23]. We also detected strong enrichment in OCRs

from natural killer (NK) cells (p-value =4.23×10−14) which have a less well-established

role in MS [23]. Interestingly, we observed enrichments across all progenitor cells, sug-

gesting that many MS genetic associations are located in regulatory regions involved in

core cellular processes in immune cell populations.

CD4 T and B cell regulatory regions independently mediate MS genetics

Many of the studied cell populations share common cellular regulatory signatures,

which is reflected in the substantial correlation of the OCR profiles across cell popula-

tions (Additional file 2, Fig. S1). Hence, we examined whether the strong enrichment

observed across cell populations is a result of truly independent cell type-specific en-

richments or whether it is due to shared regulatory landscape across immune cell types.

To address this question, we applied a joint model in LDSC to measure the contribu-

tion of OCRs from a given cell type, stratified on all other cell types in the model along

Fig. 1 A Experimental design. Top box shows the hematopoietic cell types analyzed. MS discovery GWAS
results were integrated with ATAC-seq profiles generated from the hematopoietic cell types. LDSC was
performed to evaluate enrichment of MS GWAS in the OCRs of each hematopoietic cell type. Statistical
fine-mapping was also performed on the MS GWAS results, which were then integrated with orthogonal
epigenetic data such as promoter capture HiC interactions. This integration of fine-mapping and epigenetic
data allowed for identification of putative causal mechanisms at individual loci. B Enrichment of MS GWAS
heritability in hematopoietic cell OCRs. Enrichment p-values are shown as −log10(p-value)
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with a set of baseline annotations. We report the p-value of the coefficient τc, which re-

flects the SNP heritability of a given annotation stratified on all other annotations in

the model. In this joint model where OCRs from all 16 cell types were included, we ob-

served that B cells and CD4 T cells contributed significantly to SNP heritability (coeffi-

cient p-value = 3.99×10−5 and 3.49×10−4, respectively), suggesting independent

contributions of B and CD4 T cell OCRs to MS GWAS heritability (Fig. 2A, Additional

file 1, Table S2).

To further delineate the cell types with OCRs that specifically mediate the effect of

MS GWAS results, we performed a series of pairwise LDSC analyses. In brief, OCRs of

a given hematopoietic cell type were stratified against the OCRs of each of the other 15

cell types, as well as the LDSC baseline annotations (Fig. 2B; Additional file 1, Table

S3). As above with the joint model, we report the p-value of the coefficient τc. We ob-

served that B cells remained significant even after stratifying on OCRs of any of the

other 15 cell populations (coefficient p-value ranging from 1.47×10−12 when stratifying

against HSCs, to 8.33×10−5 when stratifying against CD4 T cells). This was also the

case for CD4 T cells, which remained significant after stratifying on OCRs from any of

the other 15 cell populations (coefficient p-values ranging from 3.82×10−17 when strati-

fying against HSCs, to 2.39×10−4 when stratifying against CD8 T cells). In contrast,

CD8 T cell OCRs were no longer significant after stratifying against OCRs from CD4+

T cells (coefficient p-value = 0.21), though they were significant when stratifying on

any of the other cell populations. NK cells were also no longer significant after stratify-

ing against either CD4 T cells (coefficient p-value = 0.165) or against CD8 T cells (coef-

ficient p-value 0.356). These results indicate that the enrichment of both CD8 T cells

and NK cells can be largely explained by shared regulatory landscapes that are also

Fig. 2 A LDSC enrichment results for MS GWAS enrichment in OCRs from across hematopoietic cell types
in a joint model. Heights of the circles reflect LDSC coefficient (τc) p-values, which measures whether the
annotation (i.e., OCRs for a given cell type) contributes significantly to SNP heritability in an overall model
that includes OCRs for all hematopoietic cell types and baseline annotations. Sizes of the circles are
proportional to the enrichment p-values for that given cell type, with larger circles reflecting more
significant p-values. B LDSC enrichment p-values for pairwise stratified LDSC of MS GWAS results in OCRs
from hematopoietic cell types. Y-axis are the index cell types with LDSC enrichment p-values prior to
stratifying in parentheses. X-axis shows the comparator cell type being conditioned upon. Boxes are shaded
by the LDSC coefficient p-values for the index cell type after conditioning on the comparator cell type in
the pairwise model (with darker colors representing stronger enrichments). Red stars indicate pairwise
comparisons that are statistically significant a Bonferroni-corrected p-value threshold of 2.2×10−4
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present in CD4 T cells. Prior studies have also suggested a role for monocytes in MS

[23, 24]. OCRs from monocytes had an enrichment p-value of 4.17×10−9, but we ob-

served that stratifying on OCRs from CD4 T cells or B cells ameliorated this monocyte

heritability enrichment (coefficient p-values 0.166 and 0.266, respectively).

We also performed a separate analysis examining whether OCRs specific to a given

cell type mediate MS heritability enrichments. For each of the mature hematopoietic

cell populations, we performed LDSC on only the cell type-specific OCRs, i.e., ATAC-

seq peaks present in only that cell type. B cells exhibited a statistically significant en-

richment of cell-specific OCRs for MS GWAS (enrichment p-value = 3.27×10−4). CD4

T cell-specific peaks were nominally significant at a p-value of 0.013 but did not survive

correction for multiple hypothesis testing (Bonferroni-corrected p-value threshold of

5.6×10−3). Cell type-specific peaks for all other terminal hematopoietic cell types had

enrichment p-values > 0.05 (Additional file 2, Fig. S2; Additional file 1, Table S4).

MS genetic associations are mediated in terminal immune cell populations

In the lymphoid lineage, we observed stronger enrichments in terminal cell populations

than we did for the progenitor populations (Fig. 1B). For example, the strongest enrich-

ment in progenitor cells was observed for common lymphoid progenitor cells (CLP, en-

richment p-value 2.32×10−4), and it was orders of magnitude less statistically significant

compared to the enrichment observed for CD4 T or B cells (Fig. 1B). For each of the

terminal populations, the significance remained even after stratifying against OCRs

from CLP; however, the converse was not true (Fig. 2B). The enrichment in CLP was

completely ameliorated by stratifying against B cell or CD4 T cell OCRs (coefficient p-

value 0.98 and 0.966, respectively, Fig. 2B). Together, these results suggest that terminal

cells of the lymphoid compartment retain cellular regulatory features from their pro-

genitor populations that are important for MS pathogenesis, but have also developed

specific regulatory features of additional importance to MS susceptibility.

Comparison of immune cell enrichment with neuropsychiatric and autoimmune disorders

We next sought to understand how the immune cell enrichments in MS might be simi-

lar or different from those of other autoimmune or neuropsychiatric disorders. To test

this, we calculated heritability enrichment within these 16 hematopoietic OCRs for

GWAS of various other neuropsychiatric disorders and autoimmune disorders: Alzhei-

mer disease (AD) [25], schizophrenia (SCZ) [26], bipolar disorder (BPD) [27], type 1

diabetes (T1D) [28], Crohn’s disease (CD) [29], ulcerative colitis (UC) [29], systemic

lupus erythematosus (SLE) [30], rheumatoid arthritis (RA) [31], and primary biliary cir-

rhosis (PBC) [32] (Additional file 2, Fig. S3A; Additional file 1, Table S5). We identified

previously recognized cell-type enrichments across these other diseases, such as enrich-

ments in OCRs from B cells (enrichment p-value 1.93×10−7), CD4 T cells (p-value

7.34×10−8), and CD8 T cells (p-value 2.09×10−6) for RA [15, 31]. However, the herit-

ability enrichments for OCRs from these hematopoietic cell populations tended to be

much stronger for MS, despite similar sample sizes, e.g., 41,505 disease cases for MS

and 38,242 disease cases for RA. To parse out cell type-specific enrichments in these

other disorders, we also tested heritability enrichments under the joint model in LDSC

by including OCRs from all 16 cell types (Additional file 2, Fig. S3B, Additional file 1,
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Table S6). In a similar fashion to the MS GWAS joint analyses above, we measured the

contribution to heritability for a given set of OCRs of interest, controlling for the effects

of a set of baseline annotations and OCRs from all other hematopoietic cell types.

Across the nine other comparator diseases, the only other statistically significant strati-

fied enrichments were in OCRs from B cells in SLE GWAS (coefficient p-value

8.53×10−5). These results highlight the striking heritability enrichments in OCRs from

CD4 T and B cells in the MS GWAS.

The CD4 T cell MS GWAS enrichment is driven by the Th17 subset

To further focus in on the MS GWAS enrichment observed in OCRs from CD4 T cells,

we utilized ATAC-seq data from various subsets of human CD4 T cells (Fig. 3A) [21].

We examined data from effector CD4 T cells (naïve effector CD4 T cells, Th1, Th2,

Th17, and follicular Th) as well as regulatory CD4 T cells (naïve Tregs and memory

Tregs). We observed strong enrichments for OCRs from both effector and regulatory

CD4 T cell populations (Fig. 3B; Additional file 1, Table S7). Next, to identify the inde-

pendent contribution of a given cell type, we applied the joint model in LDSC by in-

cluding OCRs from all CD4 T cell populations together. This joint LDSC analysis

revealed that OCRs from Th17 cells independently contributed to heritability (coeffi-

cient p-value = 4.69×10−4; Fig. 3C; Additional file 1, Table S8). These results suggest

that among CD4 T cells, OCRs from Th17 cells drive the signal for enrichment in MS

GWAS.

Memory subpopulations explain the enrichment of MS GWAS in B cells

We next examined enrichments of MS GWAS data in ATAC-seq from the B cell

lineage including naïve B cells, memory B cells, and plasmablasts (Fig. 4A) [21]. We

found that OCRs from all B cell lineage cell types were significantly enriched for MS

heritability (Fig. 4B; Additional file 1, Table S10). LDSC under a joint model including

all B cell lineage cell types revealed an independent contribution from memory B cells

(coefficient p-value = 1.10 × 10−3), but not naïve B cells or plasmablasts (Fig. 4C;

Fig. 3 A Schematic of lineage relationships among CD4+ T cell subsets for which ATAC-seq data was
analyzed. B LDSC heritability enrichment p-values for CD4+ T cell subsets in MS GWAS. See Fig. 1B for
additional description. C LDSC coefficient p-values for CD4+ T cells in MS GWAS. See Fig. 2A for
additional description
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Additional file 1, Table S11). These results suggest that in the B cell lineage, the MS

GWAS enrichment signal is driven by OCRs in memory B cells.

Immune cells from MS patients reinforce independent CD4 T and B cell enrichments

Next, we tested whether the MS GWAS enrichment in CD4+ T and B cells were also

present in OCRs from the respective immune cell types derived from individuals with

MS. We utilized ATAC-seq data performed in flow-sorted bulk CD4 T and B cell sub-

sets (n = 6) derived from six patients with MS who were not treated with immunomod-

ulatory therapy within at least 4 months of sample collection (see Additional file 1,

Table S13 for clinical details). LDSC showed statistically significant enrichments of

transitional B cells (traB; enrichment p-value = 2.08×10−3), class switched classical

memory B cells (cMBc; p-value = 2.58×10−4), effector memory CD4 T cells (T4em; p-

value = 1.87×10−4), and CD45RA+ effector memory CD4 T cells (T4ra; p-value =

3.02×10−4). Central memory CD4 T cells had an enrichment p-value of 1.53×10−3,

which was not significant after correcting for multiple hypothesis testing (Fig. 5A;

Additional file 1, Table S14).

To further identify independent cell type enrichments, we performed joint models in

LDSC as described above. We first tested a model that included CD4 T cell subsets

(T4nv, T4cm, T4em, and T4ra). In this joint model, only T4em was statistically signifi-

cant (coefficient p-value 7.45 × 10−3), reflecting the independent contribution of ef-

fector CD4 T cells in MS that we observed above using cells from healthy individuals

(Fig. 5B; Additional file 1, Table S15). We also ran a model that included B cell subsets

(traB and cMBc). In this joint comparison, neither cell type was statistically significant

when correcting for multiple hypothesis testing. However, cMBc had a coefficient

p-value that was nominally significant (p-value = 0.037), reiterating the independent

contributions of mature B cell types (Fig. 5C; Additional file 1, Table S16).

Immunomodulatory treatments suppress mediation of MS genetics in cell-specific

fashion

Next, we tested whether immunomodulatory treatments alter the cell-specific medi-

ation of MS genetic associations by utilizing data for the same immune subsets sorted

Fig. 4 A Schematic of lineage relationships among B cell lineage cell types for which ATAC-seq data was
analyzed. B LDSC heritability enrichment p-values for B cell lineage cell types in MS GWAS. See Fig. 1B for
additional description. C Stratified LDSC coefficient p-values for B cell lineage cell types in MS GWAS. See
Fig. 2A for additional description
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from patients with MS (n = 3) under treatment with either natalizumab, interferon, or

glatiramer acetate. Following treatment with any of the agents still resulted in statisti-

cally significant enrichments of cMBc and T4em (Fig. 5D; Additional file 1, Table S17),

though the magnitude of the enrichments were attenuated relative to the signals ob-

served from cells from untreated patients (compare Fig. 5A, D). To better understand

this attenuation of enrichments, we ran joint models in LDSC for T4em and cBMc cells

in which we included OCRs from untreated patients and treated patients. In a joint

model with T4em OCRs from treated and untreated MS patients, only OCRs from un-

treated patients were statistically significant (Additional file 2, Fig. S4A; Additional file

1, Table S18). Similarly, in a joint model with cMBc OCRs from treated and untreated

MS patients, only OCRs from untreated patients were statistically significant (Add-

itional file 2, Fig. S4B; Additional file 1, Table S19). Together, these results suggest that

immune-modulating therapies may attenuate the chromatin accessibility signals at MS

GWAS.

Fig. 5 A Enrichment of MS GWAS heritability in OCRs from untreated patients with MS. Enrichment p-
values are shown as −log10(p-value). B, C LDSC results for MS GWAS enrichment in a joint model for T4cm
(B) and cMBc (C) OCRs from untreated patients with MS. Heights of the circles reflect stratified LDSC
coefficient p-values. Sizes of the circles are proportional to the enrichment p-values for that given cell type,
with larger circles reflecting more significant p-values. D Enrichment of MS GWAS heritability in OCRs from
MS patients undergoing immunomodulatory treatment. Enrichment p-values are shown as −log10(p-value).
Treatments include glatiramer acetate, interferon, or natalizumab
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MS GWAS signals in B and CD4 T cells driven by active enhancer and promoter regions

We next sought to gain further insight into the functional consequences of the B and Th17

CD4 T cell OCRs underlying MS GWAS signals. We examined enrichments for MS GWAS

in chromatin immunoprecipitation sequencing (ChIP-seq) peaks from various histone mod-

ifications (H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, and H3K9me3) [33,

34]. In Th17 cells (Additional file 2, Fig. S5A; Additional file 1, Table S20), we detected sta-

tistically significant enrichments for H3K27ac (enrichment p-value = 6.54×10−9), H3K4me1

(p-value = 3.96×10−19), and H3K4me3 (p-value = 2.29×10−8). Similarly, in B cells (Add-

itional file 2, Fig. S5B; Additional file 1, Table S21), we also detected significant enrichments

for H3K27ac (enrichment p-value = 1.18×10−11), H3K4me1 (p-value = 4.96×10−16), and

H3K4me3 (p-value = 3.93×10−8). These results suggest that MS genetic associations are pri-

marily enriched at active noncoding elements: primed enhancers (H3K4me1), active

enhancers (H3K27ac and H3K4me1), and active promoters (H3K4me3).

To further delineate the chromatin states with the strongest MS genetic associations,

we examined enrichments of MS GWAS results in the predicted chromatin states for B

cells and Th17 T cells as available in the RoadMap Epigenomics Project [35]. For Th17

CD4 T cells, the “EnhA2” chromatin state (Active Enhancer 2) were statistically

enriched (enrichment p-value = 1.19 × 10−3) (Additional file 2, Fig. S6A; Additional file

1, Table S22). For B cells, “Tx3” (Transcribed 3’ preferential; enrichment p-value =

1.80×10−3) and “PromD1” (Promoter Downstream TSS 1; p-value=4.40×10−4) were sta-

tistically enriched, again reflecting the strongest enrichments at active regulatory ele-

ments (Additional file 2, Fig. S6B; Additional file 1, Table S23). These results

demonstrate that MS GWAS variants act through activating regulatory elements, con-

sistent with the autoimmune nature of MS.

Fine-mapping of MS GWAS loci in cell-specific OCRs

We next sought to understand underlying mechanisms by nominating putative causal

genes and variants in a cell-specific fashion. First, we applied statistical fine-mapping to

nominate likely causal SNPs. Most statistical fine-mapping approaches require associ-

ation information across all SNPs in a given locus. In contrast, for MS GWAS,

genome-wide results are based on targeted replication analyses, which by design in-

cluded only a select subset of SNPs within each locus. To overcome this challenge, we

applied PICS to perform statistical fine-mapping, which, as compared to other statis-

tical fine-mapping approaches, does not require GWAS summary statistics for all SNPs

in a region [15]. We defined for each locus a 95% credible set such that the sum of the

posterior probabilities for variants in that credible set is greater than or equal to 95%.

For fine-mapping, we used the joint analysis MS GWAS results, which include only

replicated genome-wide effects [8]. We included all 200 non-MHC loci where the MS

GWAS joint association p-value was less than 5×10−8. Next, we prioritized SNPs if they

had a PICS posterior probability (PP) > 1% and were included in the 95% PICS credible

set. This is a liberal threshold for defining prioritized SNPs, aimed at increasing sensi-

tivity for detecting possible causal variants. Across the 200 loci, there were 3436 cred-

ible set variants (1–58 variants per locus) (Additional file 2, Fig. S7A). At 19 loci, there

was only one variant in the credible set, and at 37 loci, there were four or fewer priori-

tized variants (Additional file 2, Fig. S7B).

Guo et al. Genome Biology          (2022) 23:127 Page 9 of 23



Next, we intersected the 3436 credible set variants with OCRs from the 16

hematopoietic cell populations, which we chose to use as they cover a broad range of

hematopoietic cell types [18]. Across the 200 loci, 870 of the prioritized variants over-

lapped an OCR in at least one cell type. Remarkably, 163 out of the 200 loci had at least

one prioritized variant overlapping an OCR in any cell type. B and CD4 T cells were

the cell types with the greatest number of loci with a credible set SNP overlapping an

OCR, 126 and 125 loci respectively (Additional file 2, Fig. S8). We further examined

the statistical overlap of the PICS credible set variants with OCRs from CD4 T cell and

B cell subpopulations. Among B cells, we found that memory B cells had the strongest

enrichment (1.51 fold; p-value 4.33×10−16) and remained statistically significant when

examining only OCRs present specifically in memory B cells (Additional file 1, Table

S24). Among CD4 T cells, we found that Th17 cells had the strongest enrichment (1.72

fold; p-value 2.21 × 10−26) and also remained statistically significant when examining

only OCRs present specifically in Th17 cells (Additional file 1, Table S25). These results

confirm that statistical fine-mapped variants highlight memory B cell and Th17 T cell

populations and that statistical fine-mapping results are useful for further functional

prioritization.

Integration of genetic and epigenetic data identifies putative causal genes

The vast majority of GWAS-associated variants are noncoding and regulate genes that

may be far from the variant in terms of linear distance on the genome. To address this

challenge and nominate putative causal genes that are regulated by the MS-associated

OCRs, we leveraged promoter capture Hi-C data (PCHiC), which identifies chromatin

looping interactions between regulatory elements and target gene promoters. We uti-

lized PCHiC data performed on 17 hematopoietic cell populations, which partially

overlap with the cell types for which we have ATAC-seq data [36]. These cell popula-

tions include naïve B cells, total B cells, activated CD4 T cells, non-activated CD4 T

cells, and total T cells. We considered only GWAS loci where a credible set MS GWAS

SNP overlapped both an OCR and a PCHiC interaction. We examined the statistical

enrichment of PICS credible set variants and PCHiC loop regions that overlap an OCR.

We found that among all cell types, PCHiC loops from naïve B (enrichment p-value

2.09 × 10−11) and activated CD4 T cells (p-value 1.77 × 10−14) had the strongest statis-

tical enrichments (Additional file 1, Table S26). This result confirms that PCHiC from

B cells and CD4 T cells are highly enriched for statistically fine-mapped variants and

may be useful for further prioritization of variants.

Having demonstrated that PCHiC loops and OCRs map onto MS GWAS variants, we

next asked whether eQTLs would colocalize SNPs overlapping these epigenetic fea-

tures. We examined whether the MS GWAS loci that overlap OCR and loops colocalize

more often with cell-specific expression quantitative trail locus (eQTL) studies than ex-

pected by chance. We performed colocalization [37] using CD4 T and B cell-specific

immune cis-eQTL results from DICE [38]. We identified a small number of colocalized

loci with eQTL eGenes, ranging from 15 SNP-eGenes pairs for stimulated CD4 T cells

to 34 for Th17 cells, of which about one third overlapped the previously identified

OCR+loops per cell type (Additional file 2, Fig. S9). Naïve Tregs and Th17 exhibited

the strongest enrichment of colocalized loci that overlap OCR and loops with follicular
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Th, memory Treg, and Th1/17 also passing the Bonferroni-corrected enrichment

threshold (Additional file 2, Fig. S10). We note that we used a less stringent threshold

of a colocalization posterior probability of 0.6 for these enrichment analyses to increase

the number of observations for examining OCR overlap.

To identify putative causal genes in an unbiased fashion, we integrated the MS fine-

mapping data with the OCR and PCHiC loops to nominate 261 genes within 86 MS

loci in B cells and 364 genes within 115 MS loci in CD4 T cells (Additional file 1, Table

S27). We note that these genes are putative causal genes, representing a list of genes

that could be linked with the MS loci via a regulatory mechanism in the respective cell

types. The majority of these genes were shared between B and CD4 T cells (n = 178;

68.2% and 48.9% respectively; Fig. 6A). We have previously suggested a list of putative

causal genes (n = 551) based on an ensemble of methods that did not include ATAC-

seq or chromatin interactions [8]. Of these 551 previously nominated genes, 67 (12.2%)

overlapped with our B cell prioritized genes and 111 (20.1%) with our CD4 T cell prior-

itized genes, highlighting that our current mechanism-specific gene prioritization is

capturing a large number of potentially causal genes that have not been previously

implicated in MS genetic studies.

Next, we utilized the list of putative causal genes to identify enriched canonical path-

ways. Starting with CD4 T and B cell lists, we created additional lists for the common

genes (shared between CD4 T and B cells), and finally genes unique to CD4 T cells and

B cells. We observed widespread pathway enrichment for the putative causal genes of

the CD4 T cells (n = 294) and B cells (n = 236) at FDR<5%. The common set of genes

was enriched in 85 pathways (Additional file 1, Table S28). The B unique gene list (n =

83) was enriched in 22 canonical pathways, including lipoprotein and cholesterol path-

ways, the CD40 pathway, and JAK-STAT pathway (Fig. 6B, C). The unique genes in

CD4 T cells (n = 186) were enriched in 99 pathways, including TCR pathways, various

interleukin pathways, and MAPK/ERK signaling pathways (Fig. 6B, C).

Pathway analyses utilize known biological connections for a given set of genes but

many of underlying mechanisms could be still uncharacterized. Thus, we leveraged

protein-protein interaction (PPI) data to test whether the respective putative causal

gene lists exhibit a high degree of connectivit y[39]. A similar percent of the mapped

CD4 T cell and B cell prioritized genes were directly connected, 48.9% and 43.7% re-

spectively (Additional file 1, Table S29; Additional file 2, Figs. S11-15). Only the CD4 T

and CD4 T unique gene lists demonstrated a higher degree of connectivity than ex-

pected (p-value<0.05), although all gene lists had communities of genes with high con-

nectivity (p-value<0.05; Additional file 1, Table S29). These results are consistent with

the pathway analyses, implying that the MS genetics are mediated by several different

mechanisms in both cell types, some of which are shared and some of which are cell-

type specific.

A fine interplay between shared and cell-specific B and CD4 T cell putative causal genes

The results of the pathways and PPI analyses suggest that the MS genes common and

unique to B and CD4 T cells do not act independently but rather have shared cellular

mechanisms. We illustrate this by studying a locus on chromosome 19 (Fig. 7) where

the lead SNP rs1465697 (chr19:49837246 C>T) has a MS GWAS association p-value of
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3.02×10−18. The lead SNP is the most highly prioritized variant by statistical fine-

mapping out of 21 overall SNPs in the 95% credible set (PP=15% for rs1465697; next

highest PP 9%). This SNP overlies an OCR present in all lymphoid lineages, including

B cells, CD4 T cells, and CD8 T cells. We have previously suggested five putative causal

genes for this locus: DKKL1, CCDC155, CD37, TEAD2, and SLC6A16 [8]. Using PCHiC

data, this OCR forms a chromatin loop interaction with TEAD2 and DKKL1, but not

the other three genes. This chromatin loop interaction is observed in activated CD4 T

cells, naïve B cells, total B cells, naïve CD8 T cells, and fetal thymus, but none of the

other hematopoietic cell types [36]. Furthermore, this SNP is an eQTL for TEAD2 in B

cells, but is not an eQTL for any other gene in this locus in any of the available

hematopoietic cell types (Fig. 7) [38]. Together, these lines of evidence support TEAD2

as the causal gene at this locus.

Interestingly, TEAD2 is a transcription factor with 1459 predicted regulated genes

[40], including 38 putatively causal CD4 T cell genes and 25 B cell genes as nominated

above (FDR < 1 %, FDR < 1%, respectively; Additional file 2, Figs. S16-17). The majority

of these genes are common in both CD4 T and B cells (n = 23; FDR < 1%; Additional

file 2, Fig. S18). To identify genes whose expression is modulated by TEAD2 in CD4 T

and B cells, we examined TEAD2 knockdown (KD) and over-expression (OE) in cancer

cell lines (n = 8, respectively) from the Library of Integrated Network-Based Cellular

Signatures (LINCS) Program [41]. Although these cell lines do not represent an ideal

experimental model to study the effect of TEAD2 in immune cells, they can still be

used to understand mechanisms reflecting core cellular functions. Within each cell line,

Fig. 6 A Venn diagram of the putative causal CD4 T and B cell genes. B Heatmap of canonical pathway
enrichment for the putative causal genes in CD4 T cells, B cells, common in CD4 T and B cells, unique in
CD4 T cells, and unique in B cells. Only pathways with FDR<5% in at least one gene list are displayed
(n = 1950). The grayscale depicts level of statistical significance. C Scatterplot of −log10(FDR) of canonical
pathway enrichment for putative causal genes unique in CD4 T cells (X-axis) vs. B cells (Y-axis). The dashed
red lines indicated FDR<5%. The size of the dots depicts the total number of genes in the
respective pathway
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we identified genes whose expression changed in the opposite direction (top or bottom

10%) in the KD versus OE models. These ranged from 7 to 24 for the CD4 T cell prior-

itized genes (Additional file 1, Table S30; Additional file 2, Fig. S19) and from 3 to 16

for the B cell genes (Additional file 1, Table S31; Additional file 2, Fig. S23). Of these,

17 genes and 9 genes changed expression in at least 2 cell lines, respectively (Additional

file 1, Table S30-31). These data demonstrate that perturbation of TEAD2, a key im-

mune cell transcription factor, results in indirect changes of putative MS causal genes

in B and CD4 T cells.

Discussion
In this paper, we integrated MS GWAS with chromatin accessibility data from a broad

array of peripheral immune cells in order to identify putative causal cell types. Our ana-

lyses identified regulatory regions in B cells and CD4 T cells as each being independ-

ently enriched for MS genetics. Within the CD4 T cell and B cell populations, we

further identified OCRs from Th17 cells and memory B cells as specifically driving their

respective enrichments. Chromatin data from MS patients reiterated these findings and

further suggested that immunomodulatory treatments alter the chromatin accessibility

overlying MS-associated GWAS variants. Integration of PCHiC data led to

prioritization of putative causal genes in B and CD4 T cells, identifying target genes

that are both shared and specific to each of these cell populations. The putative causal

genes implicate several known signaling pathways, mostly due to the cell-specific MS-

associated genes, despite these representing a smaller percentage compared to genes

shared between B and CD4 T cells. Finally, we illustrate that the B and CD4 T cell

mechanisms are intertwined by describing how TEAD2, a putative causal gene shared

Fig. 7 A Visualization of TEAD2 locus. Lead SNP rs1465697 (PICS of 15%) is depicted with a red line. The
blue box on the left illustrates the overlap with the ATAC-seq peaks present in CD4 T (orange) and B cells
(purple). The SNP and ATAC-seq peaks also overlap a PCHiC looping interaction with the promoter for the
TEAD2 gene (arc; the boundaries of the enhancer/promoter regions are indicated in green; the promoter of
TEAD2 is highlighted with the blue box on the right). B Gene expression of TEAD2 across immune cells
available in the DICE database (https://dice-database.org/). X-axis display transcripts per million (TPM). C Cis-
eQTL boxplot per genotype status of rs1465697 in naïve B cells in the DICE database (https://dice-database.
org/). D Transcription factor enrichment in the GTRD database for the putative causal genes that are
common in CD4 T and B cells. Each dot represents one of 526 transcription factors. The Y-axis indicates the
−log10 of the FDR. The TEAD2 enrichment is highlighted (p-value = 1.34×10−8, FDR = 8.81×10−7)
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between B and CD4 T cells, contributes to disease susceptibility directly and indirectly

by targeting both shared and cell-specific MS genes.

Our study provides genetic evidence for the independent involvement of both CD4 T

and B cells in the pathogenesis of MS [1–3]. It further supports the long-debated causal

role of memory B cells in MS [23, 42, 43], shown by the highly effective therapies tar-

geting B cell receptors, most notably ocrelizumab [7]. Through our analyses, we also

corroborate decades of research that have demonstrated a primary role of CD4 T cells

in MS, including the importance of Th17 T cells [23, 44, 45]. For both the B cell and

Th17 T cell populations, we find that active enhancers and promoters drive the enrich-

ment signal, consistent with activating roles of these cell types in MS as an auto-

immune condition. The complex interplay between the B and CD4 cells in MS

pathogenesis [2, 3, 42] is also reflected by our finding of some OCRs present in both

cell types, while other OCRs are present only in specific cell populations.

Although other peripheral immune cell types have been shown to be involved in MS,

including monocytes, CD8 T cells, and mDCs [23], we did not identify independent en-

richments for these cell types. One possible explanation for this apparent contradiction

is that these cell types might work secondarily to memory B and Th17 cells, which are

more directly under influence from MS GWAS-associated variants. Non-genetic effects,

e.g. environment-specific response, could also explain their role in MS above and be-

yond any shared mechanisms with B and CD4 T cells. Further, context-specific studies,

such as under various cell activation conditions, would be necessary to unravel any po-

tential independent influence of these cells by MS genetic variants. Another potential

caveat is that we utilized bulk sorted cell populations, which may miss subpopulations

of cells that bear chromatin signatures that mediate independent effects of MS genetics.

One approach to overcome this is using single-cell epigenetic approaches, which will

be an important area of future exploration. Lastly, while our analyses do not identify an

independent genome-wide enrichment for cell types other than B and CD4 T cells,

GWAS variants may still act at individual loci in these other cell types.

One of the key challenges of GWAS is moving from genetic association to biological

mechanisms [10, 13, 14]. This is driven by three main challenges. First, linkage disequi-

librium, while highly advantageous to discovery of genetic associations, limits our abil-

ity to identify the causal variant. Second, as most GWAS variants are noncoding,

identifying the gene(s) that are affected by the causal variant can be difficult. Third, the

cell type(s) in which a given associated variant acts can be unclear. Our study demon-

strates how we can use statistical fine-mapping to help solve the first challenge, though

this is not without multiple caveats [46]. We integrated orthogonal datasets (ATAC-

seq, PCHiC, and eQTL data) to help delineate the likely causal genes and cell types and

overcome the latter two challenges. We document how shared and cell-specific genes

affect putative causal pathways. We further illustrate the complex interplay between

shared and cell-specific putative causal MS genes by studying the TEAD2 locus, a tran-

scription factor recently implicated in immune regulation [47].

Conclusions
Together, our study generates important insights into the driver subpopulations of per-

ipheral immune cells in MS, reinforcing how MS genetics act primarily through B and
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CD4 T cells. Our study also demonstrates the need for in-depth context-specific cellu-

lar data to carefully delineate the causal role of each immune cell subset in MS.

Methods
GWAS summary statistics

We utilized available MS GWAS summary statistics, which included data from

8,278,136 variants across 14,802 individuals with MS (cases) and 26,703 individuals

without MS (controls) [8]. For enrichment analyses, we included only the 6,773,531

variants that were analyzed in all 15 cohorts of the discovery stage meta-analysis; this

resulted in 6,773,531 variants carried forward. We additionally utilized GWAS sum-

mary statistics from various neuropsychiatric disorders or autoimmune disorders: Alz-

heimer disease (AD) [25], schizophrenia (SCZ) [26], bipolar disorder (BPD) [27], type 1

diabetes (T1D) [28], Crohn’s disease (CD) [29], ulcerative colitis (UC) [29], systemic

lupus erythematosus (SLE) [30], rheumatoid arthritis (RA) [31], and primary biliary cir-

rhosis (PBC) [32]. All GWAS data were converted to the “.sumstats” format as required

by LDSC using the “munge.py” function in LDSC with default parameters.

Epigenetic and eQTL datasets

Hematopoietic progenitor and terminal ATAC-seq data

ATAC-seq data for 16 different human hematopoietic progenitor and terminal popula-

tions was obtained from Corces et al. [18] and Buenrostro et al. [19]. These ATAC-seq

profiles were generated on bulk FACS-sorted cells from human peripheral blood or

bone marrow cells. Alignment of the ATAC-seq data and peak-calling were performed

as previously described [20]. To identify cell-type-specific peaks for each cell type, we

used ATAC-seq peaks for that cell type and removed any peaks that overlapped with a

peak present in any one of the other 15 cell types. A single base pair overlap was con-

sidered to be overlapping.

Immune cell ATAC-seq data

We used publicly available immune cell ATAC-seq data (NCBI GEO GSE 118189) de-

rived from flow-sorted peripheral blood cells [21]. As each cell type had between 1-4

human donors, we merged the raw ATAC-seq data from the individual donors for a

given cell type. We aligned ATAC-seq reads using bowtie2 version 2.2. 1[48] with de-

fault parameters and a maximum paired-end insert distance of 2000 base pairs. The

bowtie2 index was constructed with the default parameters for the hg19 reference gen-

ome. We filtered out reads that mapped to the mitochondria and used samtools version

1.10 [49] to filter out reads with MAPQ < 30 and with the flags “- F 1804” and “-f 2.”

Additionally, duplicate reads were discarded using picard version 2.20.6 (http://

broadinstitute.org.github.io/picard). Finally, chromatin accessibility peaks were identi-

fied with MACS2 version 2.1.1 [50] under default parameters and “--nomodel

--nolambda --keep-dup all --call-summits.”

ChIP-seq data

We downloaded available pre-processed ChIP-seq peak calls from ENCODE for B cells

[33]. Where replicates were available, the bed files for the replicates were merged to
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create a composite set of peaks for each histone mark. Data for Th17 histone ChIP-seq

were downloaded from the Roadmap Epigenomics Project [34] (NCBI GEO

GSM997225); we used pre-processed ChIP-seq peak calls generated in Amariuta et al.

[51].

chromHMM

We used a 25 chromatin state model [35], which are imputed based on 12 epigenetic

marks from across 127 epigenomes generated as part of the Roadmap Epigenomics

Project [34]. We used the chromatin states from B cells and Th17 CD4+ T cells. Chro-

matin states were downloaded from https://egg2.wustl.edu/roadmap/web_portal/chr_

state_learning.html. We excluded the “Quiescent/Low” cell state, as it encompasses a

large proportion of the genome, resulting in unstable estimates of heritability.

Verily ATAC-seq data

We utilized immune cell ATAC-seq data generated from Verily as part of the SysteMS

collaboration with Brigham & Women’s Hospital (PIs: Dr. Chitnis and Dr. Weiner).

Cell sorting is done as follows: Frozen cryovials in liquid nitrogen were thawed in a

37 °C bead bath and centrifuged for 5 min at 600×g, 4 °C. The cell pellet was washed

with 1 mL of FACS buffer, and the wash repeated. The cell pellet was resuspended in

the residual volume with 2.5 μL of 0.33 mg/mL S7 DNAse. Fifty microliters of staining

cocktail was added for the respective flow cytometry panels to be analyzed (T cell, B

cell, myeloid panel) and incubated for 25 min on ice and in the dark. Cells were washed

in FACS buffer, resuspended in a final volume of 400 μL FACS buffer, and passed

through a 35-μm cell strainer cap. Stained samples were sorted on a FACSAria Fusion

(BD Biosciences, San Jose, CA). Using FACSDiva v8.0.1 software, the samples were

gated first by forward and side scatter properties, then FSC-H vs FSC-A for singlet dis-

crimination, and finally, with their respective markers for each cell type (Additional file

1, Table S32). For each cell type of interest, up to 500 cells were sorted into the tag-

mentation buffer.

ATAC-seq library preparation and sequencing

Cells were sorted directly into 20 μL of cold tagmentation buffer (10 μL TD, 2 μL 2%

IGEPAL CA-630, 6 μL nuclease-free H2O, 2 μL TDE1 per sample), followed by incuba-

tion at 37 °C for 30 min with shaking at 500 RPM. Samples were stored at −20 °C until

further processing. DNA was extracted with the QIAGEN MinElute PCR purification

kit according to the manufacturer’s protocol, and samples were amplified with KAPA

HiFi kits and Illumina Nextera indices. The amplified material was cleaned with the

QIAGEN MinElute PCR purification kit and quantified using KAPA library quantifica-

tion kits. Samples were normalized and pooled for sequencing on the NextSeq

(Illumina).

Processing

Paired-end raw ATAC-seq reads were trimmed using NGmerge 60 using the default pa-

rameters. The reads were then aligned to GRCh38 using Bowtie2 version 2.3.5 49. The

resulting SAM files were converted and sorted into BAM format using samtools version
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1.5 50. We filtered out the reads with MAPQ<10 and reads that were aligned to mito-

chondria using samtools. In addition, duplicate reads were removed using picard ver-

sion 2.20.6 (http://broadinstitute.org.github.io/picard). Finally, peaks were called using

MACS2 version 2.2.5 51 with default parameters and --keep-dup all --nomodel –

nolambda. To obtain peaks for each cell type, we merged the peak files from all sam-

ples for that specific cell type using bedtools version 2.29 61.

Enrichment of GWAS results within ATAC-seq peaks

To calculate enrichments of the MS GWAS data within annotations (e.g., ATAC-seq or

ChIP-seq peaks), we applied stratified LD SCore regression (LDSC) [16, 22]. LDSC was

performed using LDSC v1.0.0 (https://github.com/bulik/LDSC), which was run on the

discovery summary statistics from the MS GWAS discovery stage summary statistics

[8]. The human MHC locus was excluded given its complex LD patterns as recom-

mended by Finucane et al. [16]

To run LDSC, we used precomputed LD scores based on the European ancestry samples

of the 1000 Genomes Project Phase 1 [52] which was restricted to HapMap3 SNPs [53],

and we generated partitioned LD scores for each set of annotations. To perform LDSC, we

regressed the summary statistics (χ2) from a given GWAS on to annotation-specific LD

scores, with baseline scores (original 53 annotation model), regression weights and allele fre-

quencies based on 1000 Genome Project Phase 1 data as precomputed by software authors.

We applied partitioned heritability analyses using LDSC under three different models:

(1) To ask how much a given annotation contributes to trait heritability, we used a

LDSC model that includes baseline annotations and an annotation of interest. The

heritability enrichment of the annotation was defined as the proportion of SNP

heritability in the category divided by the proportion of SNPs in that category; we

report statistical significance of this enrichment as p-values.

(2) When comparing multiple annotations (e.g., ATAC-seq peaks from different cell

types), we ran a LDSC model that includes the baseline model and annotations

from all cell types. In this scenario, we calculate for each annotation the coefficient

τc which measures the contribution to SNP heritability for a given annotation to

heritability in this overall model, stratified on other annotations in the model. Z-

scores for the coefficient τc were converted to a one-sided p-value, which we report

as a measure of statistical significance.

(3) We also performed LDSC on pairs of annotations, which we term pairwise

stratified LDSC. In these models, we include the baseline model, an index

annotation of interest, and a comparator annotation of interest. To run pairwise

stratified LDSC, we used a previously described extension of LDSC [54].

Throughout, all default LDSC parameters were used.

Statistical fine-mapping

Statistical fine-mapping was performed using the marginal p-values from the replica-

tion (joint analysis) summary statistics from the MS GWAS [8]. The 200 genome-wide

significant loci at p<5×10−8 were used. LD was calculated between each lead variant
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and all variants with r2>0.2 and within a 2-Mb window based on the 1000 Genomes

Phase 1 (European subset) reference panel [52]. PLINK v1.90b3.32 was used to perform

LD calculations [55, 56] with parameters of “--r2 --ld-window-kb 2000 --ld-window

999999 --ld-window-r2 0.2.”

We then applied PICS to each locus [15]. Briefly, PICS uses the lead association p-

value and LD structure of the locus to calculate the most likely causal SNPs given the

observed lead association signal. PICS probabilities represent the probability of a given

SNP in a locus being the causal SNP. Default PICS parameters were used. From the

PICS probabilities, we calculated 95% credible sets (CS). We defined the 95% CS as a

set of variants such that the true causal variant has a 95% chance of being in the cred-

ible set. To calculate credible sets, for each locus, we ranked variants in descending

order by their PICS probabilities. We then iteratively added variants to the credible set

for that locus until the sum of their PICS probabilities was greater than or equal to

0.95. For CS inclusion, we also required the variant to have a PICS probability > 0.1.

Identification of target genes

We leveraged promoter capture Hi-C (PCHiC) data from 17 hematopoietic cell popula-

tions to link genetic associations with genes that they may regulate [36]. We filtered the

PCHiC dataset for looping interactions with a CHiCAGO score > 5 [57]. An overlap be-

tween a GWAS variant and a PCHiC looping interaction was considered if the GWAS

variant overlapped any position in the non-promoter (“other end”) of the PCHiC inter-

action. For CD4+ T cells, we considered only GWAS SNPs that overlapped an ATAC-seq

peak in bulk CD4+ T cells or any of the CD4+ T cell subsets (naïve effector CD4+ T cells,

Th1, Th2, Th17, follicular Th, naïve Tregs, and memory Tregs), and which overlapped a

PCHiC interaction in naïve CD4+ T cells (nCD4), total CD4+ T cells (tCD4), non-

activated total CD4+ T cells (naCD4), or activated total CD4+ T cells (aCD4). For B cells,

we considered only GWAS SNPs that overlapped an ATAC-seq peak in bulk B cells or

any of the B cell subsets (naïve B cells, memory B cells, or plasmablasts), and which over-

lapped a PCHiC interaction in naïve B cells (nB) or total B cells (tB).

Colocalization of MS GWAS loci with eQTL studies

We performed colocalization analyses utilizing coloc [37], MS GWAS summary statis-

tics [8], and cis-eQTL analyses of CD4 T and B cells from the DICE database [38]. We

included the following subsets: Th1, Th2, Th1/17 (labeled as THSTAR in the provided

summary statistics), Th17, naïve CD4, stimulated CD4, naïve Tregs, memory Tregs, and

naïve B cells. Sorting details are available in the DICE original publication [38]. For the

MS GWAS, we included per locus all variants within a ±100 kb region. For the eQTL

studies, we included variants with any p-value around ±1 megabase of the transcription

starting site (TSS), as provided by the DICE authors, and any eGene with a significant

eQTL association at 10% FDR. Coloc was run on the common set of variants and we

defined a priori as colocalized a locus-eGene pair that had a posterior probability of

both traits being associated and share a single causal variant (H4) larger than 60%. Per

cell subtype OCR+loop enrichment was estimated with Fisher’s exact for the 2×2 table

of a locus-eGene being colocalized vs. overlapping OCR+loop within either CD4 T cells

or B cells.
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Correction for multiple hypothesis testing

Throughout our manuscript, we use Bonferroni corrections when testing multiple hy-

potheses. To generate a Bonferroni-corrected p-value threshold, we used a traditional

p-value threshold of 0.05 divided by the number of tests being performed in a given

analysis. We note that as many of the tests are correlated (since the underlying annota-

tions are often highly correlated with each other), the effective number of independent

tests being performed is fewer than the number of tests actually performed. As such,

our analyses are overly conservative. We decided on this approach of using Bonferroni

corrections as opposed to false discovery rate (FDR) approaches, as the number of tests

being performed is often small, leading to unstable estimates of FDR.

Gene set enrichment analyses

We performed pathway analyses utilizing the canonical pathways (CP) of the Molecular

Signatures Database (MSigDB v7.2), as it is available from the Gene Set

Enrichment Analysis website (http://software.broadinstitute.org/gsea/msigdb). We

ran the Canonical Pathways, Biocarta, KEGG, and Reactome gene set categories to-

gether in the same model. We estimated statistical significance using the hypergeno-

metric distribution and applied false discovery correction, as previously described [8].

The same model was applied for the enrichment of prioritized gene sets with Gene

Transcription Regulation Database (GTRD) transcription factor targets gene sets [40].

Significant enrichment level was set to a false discovery rate < 5%.

Protein-protein interaction networks

We utilized GeNets (https://apps.broadinstitute.org/genets) [39] to leverage known

protein-protein interactions (PPI) of our prioritized gene sets. GeNets uses a random for-

est classified, trained in PPI data with 18 parameters that capture information about cen-

trality and clustering. It creates communities of genes, sets of genes (nodes) that are

connected to each other more than genes outside this community. Furthermore, it uses

the random forest classifier and the connectivity to the tested gene set to propose candi-

date genes. For each described network, the p-value is estimated by testing whether the

number of observed edges exceeds the numbers of possible edges using permutations. We

ran GeNets via the web interface with the GeNets Metanetwork v1.0 and utilizing the

InWeb model (“Override network the analysis model was trained on” option).

TEAD2 knockdown and over-expression in LINCS cell lines

Robust z-scores, “level 5 data,” from knockdown (KD) or over-expression (OE) of

TEAD2 in cancer cell lines [41], were downloaded from clue.io (https://clue.io/

command?q=/sig%20%22TEAD2%22). The robust z-scores represent differential ex-

pression for each genetic perturbagen, adjusted for the gene expression of all other per-

turbagens on the same physical plate. For knockdown and over-expression

experiments, the differential expression comparator were samples using a vector con-

trol, which are negative genetic controls that either lack a gene-specific sequence or

target a non-human gene (like GFP).
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