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The reference human genome sequence set the stage for studies of genetic variation and its association with human disease,
but epigenomic studies lack a similar reference. To address this need, the NIH Roadmap Epigenomics Consortium generated
the largest collection so far of human epigenomes for primary cells and tissues. Here we describe the integrative analysis
of 111 reference human epigenomes generated as part of the programme, profiled for histone modification patterns, DNA
accessibility, DNA methylation and RNA expression. We establish global maps of regulatory elements, define regulatory
modules of coordinated activity, and their likely activators and repressors. We show that disease- and trait-associated
genetic variants are enriched in tissue-specific epigenomic marks, revealing biologically relevant cell types for diverse
human traits, and providing a resource for interpreting the molecular basis of human disease. Our results demonstrate
the central role of epigenomic information for understanding gene regulation, cellular differentiation and human disease.

While the primary sequence of the human gen-
ome is largely preserved in all human cell types,
the epigenomic landscape of each cell can vary
considerably, contributing to distinct gene expres-
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and cells. We used a diversity of assays, including
chromatin immunoprecipitation (ChIP)*'*'¢7,
DNA digestion by DNase I (DNase)”"*, bisulfite
treatment"*>'**, methylated DNA immunopreci-

sion programs and biological functions'™. Epi-
genomic information, such as covalent histone modifications, DNA
accessibility and DNA methylation can be interrogated in each cell and
tissue type using high-throughput molecular assays>*~®. The resulting
maps have been instrumental for annotating cis-regulatory elements
and other non-exonic genomic features with characteristic epigenomic
signatures™, and for dissecting gene regulatory programs in develop-
ment and disease”"'"**, Despite these technological advances, we still
lack a systematic understanding of how the epigenomic landscape con-
tributes to cellular circuitry, lineage specification, and the onset and pro-
gression of human disease.

To facilitate and spearhead these efforts, the NIH Roadmap Epigeno-
mics Program was established with the goal of elucidating how epige-
netic processes contribute to human biology and disease. One of the
major components of this programme consists of the Reference Epi-
genome Mapping Centers (REMCs)'®, which systematically character-
ized the epigenomic landscapes of representative primary human tissues

pitation (MeDIP)*, methylation-sensitive restric-
tion enzyme digestion (MRE)*?, and RNA profiling®, each followed by
massively parallel short-read sequencing (-seq). The resulting data sets
were assembled into publicly accessible websites and databases, which
serve as a broadly useful resource for the scientific and biomedical com-
munity. Here we report the integrative analysis of 111 reference epige-
nomes (Fig. 1 and Extended Data Fig. 1a—d), which we analyse jointly
with an additional 16 epigenomes previously reported by the Ency-
clopedia of DNA Elements (ENCODE) project™.

We integrate information about histone marks, DNA methylation,
DNA accessibility and RNA expression to infer high-resolution maps
of regulatory elements annotated jointly across a total of 127 reference
epigenomes spanning diverse cell and tissue types. We use these anno-
tations to recognize epigenome differences that arise during lineage
specification and cellular differentiation, to recognize modules of regu-
latory regions with coordinated activity across cell types, and to identify
key regulators of these modules based on motif enrichments and regulator
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Figure 1 | Tissues and cell types profiled in the Roadmap Epigenomics
Consortium. Primary tissues and cell types representative of all major lineages
in the human body were profiled, including multiple brain, heart, muscle,
gastrointestinal tract, adipose, skin and reproductive samples, as well as

expression. In addition, we study the role of regulatory regions in human
disease by relating our epigenomic annotations to genetic variants asso-
ciated with common traits and disorders. These analyses demonstrate
the importance and wide applicability of our data resource, and lead to
important insights into epigenomics, differentiation and disease. Specific
highlights of our findings are given below.

e Histone mark combinations show distinct levels of DNA methyla-
tion and accessibility, and predict differences in RNA expression
levels that are not reflected in either accessibility or methylation.

¢ Megabase-scale regions with distinct epigenomic signatures show
strong differences in activity, gene density and nuclear lamina asso-
ciations, suggesting distinct chromosomal domains.

 Approximately 5% of each reference epigenome shows enhancer and
promoter signatures, which are twofold enriched for evolutionarily
conserved non-exonic elements on average.

e Epigenomic data sets can be imputed at high resolution from exist-
ing data, completing missing marks in additional cell types, and
providing a more robust signal even for observed data sets.

¢ Dynamics of epigenomic marks in their relevant chromatin states
allow a data-driven approach to learn biologically meaningful rela-
tionships between cell types, tissues and lineages.

¢ Enhancers with coordinated activity patterns across tissues are enriched
for common gene functions and human phenotypes, suggesting that
they represent coordinately regulated modules.

o Regulatory motifs are enriched in tissue-specific enhancers, enhancer
modules and DNA accessibility footprints, providing an important
resource for gene-regulatory studies.

¢ Genetic variants associated with diverse traits show epigenomic enrich-
ments in trait-relevant tissues, providing an important resource for
understanding the molecular basis of human disease.

Reference epigenome mapping across tissues and cell types

The REMCs generated a total of 2,805 genome-wide data sets, includ-
ing 1,821 histone modification data sets, 360 DNA accessibility data sets,

318 | NATURE | VOL 518 | 19 FEBRUARY 2015

Germinal matrix

Ganglion eminence
derived primary
cultured neurospheres
Cortex derived primary
cultured neurospheres

Skin keratinocyte
Skin fibroblasts

t—= Skin melanocytes

Marrow derived
mesenchymal cells
Chondrocytes

immune lineages, ES cells and iPS cells, and differentiated lineages derived from
ES cells. Box colours match groups shown in Fig. 2b. Epigenome identifiers
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277 DNA methylation data sets, and 166 RNA-seq data sets, encom-
passing a total of 150.21 billion mapped sequencing reads correspond-
ing to 3,174-fold coverage of the human genome.

Here, we focus on a subset of 1,936 data sets (Fig. 2) comprising 111
reference epigenomes (Fig. 2a—d), which we define as having a core set
of five histone modification marks (Fig. 2e). The five marks consist of:
histone H3 lysine 4 trimethylation (H3K4me3), associated with pro-
moter regions'®**; H3 lysine 4 monomethylation (H3K4me1), associ-
ated with enhancer regions'®; H3 lysine 36 trimethylation (H3K36me3),
associated with transcribed regions; H3 lysine 27 trimethylation
(H3K27me3), associated with Polycomb repression*”; and H3 lysine 9
trimethylation (H3K9me3), associated with heterochromatin regions™.
Selected epigenomes also contain a subset of additional epigenomic
marks, including: acetylation marks H3K27ac and H3K9ac, associated
with increased activation of enhancer and promoter regions” > (Fig. 2f);
DNase hypersensitivity”'?, denoting regions of accessible chromatin
commonly associated with regulator binding (Fig. 2g); DNA methyla-
tion, typically associated with repressed regulatory regions or active gene
transcripts®*® and profiled using whole-genome bisulfite sequencing
(WGBS)", reduced-representation bisulfite sequencing (RRBS)*, and
mCRF-combined®! methylation-sensitive restriction enzyme (MRE)*
and immunoprecipitation based®' assays (Fig. 2h); and RNA expres-
sion levels®, measured using RNA-seq and gene expression microarrays
(Fig. 2i). Our definition of 111 reference epigenomes is very similar to
that used by the International Human Epigenome Consortium (IHEC),
which required RNA-seq, WGBS and H3K27ac that are only available
in a subset of epigenomes here. Lastly, an additional 16 histone modi-
fication marks on average were profiled across 7 deeply covered cell
types (Fig. 2j).

We jointly processed and analysed our 111 reference epigenomes
with 16 additional epigenomes from ENCODE**. We generated genome-
wide normalized coverage tracks, peaks and broad enriched domains
for ChIP-seq and DNase-seq”**, normalized gene expression values for
RNA-seq™, and fractional methylation levels for each CpG site®"***,
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We computed several quality control measures (Fig. 2 and Supplemen-
tary Table 1) including the number of distinct uniquely mapped reads;
the fraction of mapped reads overlapping areas of enrichment'®*%;
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Figure 2 | Data sets available for each reference epigenome. List of 127
epigenomes including 111 by the Roadmap Epigenomics program (E001-
E113) and 16 by ENCODE (E114-E129). See Supplementary Table 1 for a full
list of names and quality scores. a—d, Tissue and cell types grouped by type
of biological material (a), anatomical location (b), reference epigenome
identifier (EID, ¢) and abbreviated name (d). PB, peripheral blood. ENCODE
2012 reference epigenomes are shown separately. e-g, Normalized strand
cross-correlation quality scores (NSC)*” for the core set of five histone

marks (e), additional acetylation marks (f) and DNase-seq (g). h, Methylation
data by WGBS (red), RRBS (blue) and mCREF (green). A total of 104
methylation data sets available in 95 distinct reference epigenomes. i, Gene
expression data using RNA-seq (brown) and microarray expression (yellow).
j» A total of 26 epigenomes contain 184 additional histone modification marks.
k, Sixty highest-quality epigenomes (purple) were used for training the core
chromatin state model, which was then applied to the full set of epigenomes
(purple and orange).

genome-wide strand cross-correlation® (Fig. 2e-g); inter-replicate
correlation; multidimensional scaling of data sets from different pro-
duction centres (Supplementary Fig. 1); correlation across pairs of data
sets (Extended Data Fig. 1e); consistency between assays carried out in
multiple mapping centres (Supplementary Table 2); read mapping qua-
lity for bisulfite-treated reads®®*’; and agreement with imputed data*
Outlier data sets were flagged, removed or replaced, and lower-coverage
data sets were combined where possible (see Methods).

The resulting data sets provide global views of the epigenomic land-
scape in a wide range of human cell and tissue types (Fig. 3), including
the largest and most diverse collection to date of chromatin state anno-
tations (Fig. 3a); some of the deepest surveys of individual cell types
using diverse epigenomic assays (with 21-31 distinct epigenomic marks
for seven deeply profiled epigenomes; Fig. 3b); and some of the broad-
est surveys of individual epigenomic marks across multiple cell types
(Fig. 3¢). These data sets enable genome-wide epigenomic analyses across
multiple dimensions (Fig. 3d). All data sets, standards and protocols
are publicly available from web portals, linked from the main consor-
tium homepage http://www.roadmapepigenomics.org, and also at http://
compbio.mit.edu/roadmap.

Chromatin states, DNA methylation and DNA accessibility

As afoundation for integrative analysis, we used a common set of com-
binatorial chromatin states*' across all 111 epigenomes, plus 16 addi-
tional epigenomes generated by the ENCODE project (127 epigenomes
in total), using the core set of five histone modification marks that were
common to all. We trained a 15-state model (Fig. 4a, b and Supplemen-
tary Table 3a) consisting of 8 active states and 7 repressed states (Fig. 4¢)
that were recurrently recovered (Extended Data Fig. 2a), and showed
distinct levels of DNA methylation (Fig. 4d), DNA accessibility (Fig. 4e),
regulator binding (Extended Data Fig. 2b and Supplementary Fig. 2)
and evolutionary conservation (Fig. 4f and Supplementary Fig. 3). The
active states (associated with expressed genes) consist of active tran-
scription start site (TSS) proximal promoter states (TssA, TssAFlnk), a
transcribed state at the 5 and 3’ end of genes showing both promoter
and enhancer signatures (TxFInk), actively transcribed states (Tx, TxWk),
enhancer states (Enh, EnhG), and a state associated with zinc finger protein
genes (ZNF/Rpts). The inactive states consist of constitutive hetero-
chromatin (Het), bivalent regulatory states (TssBiv, BivFlnk, EnhBiv),
repressed Polycomb states (ReprPC, ReprPCWKk), and a quiescent state
(Quies), which covered on average 68% of each reference epigenome.
Enhancer and promoter states covered approximately 5% of each reference
epigenome on average, and showed enrichment for evolutionarily con-
served non-exonic regions*

To capture the greater complexity afforded by additional marks, we
trained additional chromatin state models in subsets of cell types. In
the subset of 98 reference epigenomes that also included H3K27ac data,
we also learned an 18-state model (Extended Data Fig. 2c and Supplemen-
tary Table 3b), enabling us to distinguish enhancer states containing
strong H3K27ac signal (EnhA1, EnhA2), which showed higher DNA
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Figure 3 | Epigenomic information across tissues and marks. a, Chromatin
state annotations across 127 reference epigenomes (rows, Fig. 2) in a ~3.5-Mb
region on chromosome 9. Promoters are primarily constitutive (red vertical
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b, Signal tracks for IMR90 showing RNA-seq, a total of 28 histone modification
marks, whole-genome bisulfite DNA methylation, DNA accessibility, digital
genomic footprints (DGF), input DNA and chromatin conformation
information”. ¢, Individual epigenomic marks across all epigenomes in which
theyare available. d, Relationship of figure panels highlights data set dimensions.

accessibility (Extended Data Fig. 3a), lower methylation (Extended Data
Fig. 3b) and higher transcription factor binding (Extended Data Fig. 2c)
than enhancers lacking H3K27ac. In a subset of 7 epigenomes with an
average of 24 epigenomic marks, we learned separate 50-state chro-
matin state models based on all the available histone marks and DNA
accessibility in each epigenome (Supplementary Fig. 4), which addi-
tionally distinguished: a DNase state with distinct transcription factor
binding enrichments (Supplementary Fig. 4f), including for mediator/
cohesin components*’ (even though CTCF was not included as an input
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track to learn the model) and repressor NRSF; transcribed states show-
ing H3K79mel and H3K79me2 and associated with the 5" ends of genes
and introns; and a large number of putative regulatory and neighbour-
ing regions showing diverse acetylation marks even in the absence of
the H3K4 methylation signatures characteristic of enhancer and pro-
moter regions.

We used chromatin states to study the relationship between histone
modification patterns, RNA expression levels, DNA methylation and
DNA accessibility. Consistent with previous studies'**>****, we found
low DNA methylation and high accessibility in promoter states, high
DNA methylation and low accessibility in transcribed states, and inter-
mediate DN A methylation and accessibility in enhancer states (Fig. 4d, e
and Extended Data Fig. 3a, b). These differences in methylation level
were stronger for higher-expression genes than for lower-expression
genes, leading to a more pronounced DNA methylation profile (Extended
Data Fig. 3¢, Supplementary Fig. 5 and Supplementary Table 4f). Genes
proximal to H3K27ac-marked enhancers show significantly higher expres-
sion levels (Extended Data Fig. 3d), and conversely, higher-expression
genes were significantly more likely to be neighbouring H3K27ac-
containing enhancers (Extended Data Fig. 3e).

Chromatin states sometimes captured differences in RNA express-
ion that are missed by DNA methylation or accessibility. For example,
TxFlnk, Enh, TssBiv and BivFInk states show similar distributions of
DNA accessibility but widely differing enrichments for expressed genes
(Fig. 4c, d). Enh and ReprPC states show intermediate DNA methyla-
tion, but very different distributions of DNA accessibility and different
enrichments for expressed genes (Fig. 4c—e). Lack of DNA methylation,
typically associated with de-repression, is associated with both the active
TssA promoter state and the bivalent TssBiv and BivFlnk states. Bivalent
states TssBiv and BivFInk also show overall lower DNA methylation
and higher DNA accessibility than enhancer states Enh and EnhG, and
binding by both activating and repressive regulatory factors (Extended
Data Fig. 2b). These results also held for alternative methylation mea-
surement platforms (Extended Data Fig. 4a—c), and for the 18-state chro-
matin state model (Extended Data Fig. 4d, e). Overall, these results
highlight the complex relationship between DNA methylation, DNA
accessibility and RNA transcription and the value of interpreting DNA
methylation and DNA accessibility in the context of integrated chro-
matin states that better distinguish active and repressed regions.

Given the intermediate methylation levels of tissue-specific enhan-
cer regions, we directly annotated intermediate methylation regions,
based on 25 complementary DNA methylation assays of MeDIP*"*
and MRE-seq*>* from 9 reference epigenomes*. This resulted in more
than 18,000 intermediate methylation regions, showing 57% CpG meth-
ylation on average, that are strongly enriched in genes, enhancer chro-
matin states (EnhBiv, EnhG, Enh) and evolutionarily conserved regions.
Intermediate methylation was associated with intermediate levels of
active histone modifications and DNase I hypersensitivity. Near TSSs,
intermediate methylation correlated with intermediate gene expres-
sion, and in exons it was associated with an intermediate level of exon
inclusion””. Intermediate methylation signatures were equally strong
within tissue samples, peripheral blood and purified cell types, suggest-
ing that intermediate methylation is not simply reflecting differential
methylation between cell types, but probably reflects a stable state of
cell-to-cell variability within a population of cells of the same type.

Epigenomic differences during lineage specification

We next studied the relationship between DNA methylation dynam-
ics and histone modifications across 95 epigenomes with methylation
data, extending previous studies that focused on individual lineages'>***.
We found that the distribution of methylation levels for CpGs in some
chromatin states varied significantly across tissue and cell type (Fig. 4g,
Extended Data Fig. 4f and Supplementary Table 4a). For example,
TssAFInk states were largely unmethylated in terminally differentiated
cells and tissues, but frequently methylated for several pluripotent and
embryonic-stem-cell-derived cells (Bonferroni-corrected F-test P << 0.01);
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state definitions, abbreviations and histone mark probabilities. b, Average
genome coverage. Genomic annotation enrichments in HI1-ES cells. ¢, Active
and inactive gene enrichments in H1-ES cells (see Extended Data Fig. 2b for
GM12878). d, DNA methylation. e, DNA accessibility. d, e, Whiskers show
1.5X interquartile range. Circles are individual outliers. f, Average overlap fold
enrichment for GERP evolutionarily conserved non-exonic nucleotides. Bars

Enh and EnhG states were highly methylated in pluripotent cells, but
showed a broader distribution of intermediate methylation in differen-
tiated cells and tissues (P < 0.01); EnhBiv states were unmethylated in
most primary cells and tissues, but showed a broader distribution of
methylation levels in pluripotent cells, possibly reflecting cell-to-cell
heterogeneity (P < 0.01); the repressed state ReprPC showed varying
methylation levels among epigenomes; and the Het state showed high
levels of methylation in almost all epigenomes.

Wealso studied DNA methylation changes in three different systems.
First, we studied DNA methylation changes during embryonic stem (ES)
cell differentiation®>*'. We identified regions that lost methylation (dif-
ferentially methylated regions (DMRs), Supplementary Table 4c) upon
differentiation of ES cells (E003) to mesodermal (E013), endodermal
(E011) and ectodermal (E012) lineages (Fig. 4h). Each lineage showed a
largely distinct set of ~2,200-4,400 DMRs that are enriched for distinct
transcription factor binding events (Fig. 4h, right column)®?, consistent
with their distinct developmental regulation. Upon further differenti-
ation, ectodermal DMRs remained hypomethylated in three neural
progenitor populations®, despite the usage of distinct human ES cell
(hESC) lines, and mesodermal and endodermal DMRs remained highly
methylated (Fig. 4h), highlighting the lineage-specific nature of changes
in DNA methylation during early differentiation®>*.

Second, we studied DNA methylation changes associated with breast
epithelia differentiation®. Ectoderm to breast epithelia differentiation
was dominated by DNA methylationloss (1.3M CpGs lost methylation
compared with 0.2M gained), consistent with other primary somatic
cell types®'. By distinguishing luminal versus myoepithelial cells by flow
sorting, and comparing a set of DMRs (Supplementary Table 4d) de-
fined specifically in epithelial lineages*’, we found differences in nearest-
gene enrichments® (mammary gland epithelium development versus

\\’b Regulator Muscle phenotype - I
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denote standard deviation. g, DNA methylation (WGBS) density (colour, In
scale) across cell types. Red = max In(density + 1). Left column indicates tissue
groupings; a full list is shown in Extended Data Fig. 4f. h, DNA methylation
levels (left) and transcription factor enrichment (right) during ES cell
differentiation®***. i, Chromatin mark changes during cardiac muscle
differentiation. Heat map = average normalized mark signal in Enh. C2 cluster
enrichment®, with all clusters shown in http://compbio.mit.edu/roadmap.

actin filament bundle, respectively) and differences in motif density
(luminal DMRs show greater motif density for 51 transcription factors
and lower density for 0 transcription factors). Proximal DMRs were
highly associated with increased transcription, consistent with regula-
tory element de-repression associated with DNA methylation loss.

Third, we asked whether tissue environment or developmental origin
is the primary driving factor in DNA methylation differences observed
in more differentiated cell types® using epigenomes from skin cell
types (keratinocytes E057/058, melanocytes E059/E061 and fibroblasts
E055/056) that share a common tissue environment but possess dis-
tinct embryonic origins (surface ectoderm, neural crest and mesoderm,
respectively). We found that despite the shared tissue environment,
these three cell types displayed lower overlap in their DNA methylation
and histone modification signatures, and instead were more similar to
other cell types with a shared developmental origin. Using a set of DMRs
(Supplementary Table 4e) defined specifically in the skin cell types™,
keratinocytes shared 1,392 (18%) of DMRs with surface ectoderm-
derived breast cell types (hypergeometric P value <10~ °), and 97% of
these were hypomethylated. These shared DMRs were enriched for reg-
ulatory elements and cell-type-relevant genes, suggesting a common
gene-regulatory network and shared signalling pathways and structural
components*. These results suggest that common developmental ori-
gin can be a primary determinant of global DNA methylation patterns,
and sometimes supersedes the immediate tissue environment in which
they are found.

We also examined coordinated changes in chromatin marks assoc-
iated with cellular differentiation®. We found that enhancers showing
coordinated differences in multiple marks were enriched near genes
showing common tissue-specific expression, and common knockout
phenotypes based on their mouse orthologues. For example, enhancers
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that showed higher H3K27ac and H3K4me3 (Fig. 4i, cluster C2) in left
ventricle (E095) relative to their ES cells (E003) and mesendodermal
(E004) precursor lineages were enriched for heart ventricle expression
and cardiac and muscle phenotypes in their mouse orthologues.

Most variable states and distinct chromosomal domains

We next sought to characterize the overall variability of each chromatin
state across the full range of cell and tissue types. We first evaluated the
observed consistency of each chromatin state at any given genomic
position across all 127 epigenomes (Fig. 5a). We found that H3K4mel -
associated states (including TxFInk, EnhG, EnhBiv and Enh) are the most
tissue specific, with 90% of instances present in at most 5-10 epigen-
omes, followed by bivalent promoters (TssBiv) and repressed states
(ReprPC, Het). In contrast, active promoters (TssA) and transcribed
states (Tx, TxWk) were highly constitutive, with 90% of regions marked
in as many as 60-75 epigenomes. Quiescent regions were the most con-
stitutive, with 90% consistently marked in most of the 127 epigenomes.
These results held in the 18-state chromatin state model (Extended Data
Fig. 5a), and in the subset of highest-quality epigenomes (Supplementary
Fig. 6a, b).

Adjusting for the overall coverage and variability of each state, we
then studied differences in the relative fraction of the genome anno-
tated to each chromatin state between cell types (Fig. 5b, Extended Data
Fig. 5b and Supplementary Fig. 6¢c-e). Haematopoietic stem cells and
immune cells show a consistent and previously unrecognized depletion
of active and bivalent promoters (T'ssA, TssBiv) and weakly transcribed
states (TxWKk), which may be related to their capacity to generate sub-
lineages and enter quiescence (reversible GO phase). ES cells and induced
pluripotent stem cells (iPS cells) show enrichment of T'ssBiv, consistent
with previous studies®®, and a depletion of ReprPCWk (defined by weak
H3K27me3), possibly due to restriction of H3K27me3-establishing Poly-
comb proteins to promoter regions. Notably, IMR90 fetal lung fibro-
blasts, which were previously used as a somatic reference cell type™, are
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in fact a strong outlier in multiple ways, showing higher levels of Het,
ReprPC and EnhG, and a depletion of Quies chromatin states.

We next studied the relative frequency with which different chro-
matin states switch to other states across different tissues and cell types
(Fig. 5¢), relative to switching in samples of the same tissue or cell type
(Supplementary Fig. 7a,b). This revealed a relative switching enrichment
between active states and repressed states, consistent with activation
and repression of regulatory regions. The only exception was significant
switching between transcribed states and active promoter and enhancer
states, possibly due to alternative usage of promoters” and enhancers®
embedded within transcribed elements. These chromatin state switch-
ing properties were also found in the 18-state model incorporating
H3K27ac marks (Extended Data Fig. 5¢) and in the subset of 16 ENCODE
reference epigenomes using both models (Supplementary Fig. 7c, d).
We found that enhancers and promoters maintained their identity,
except for a small subset of regions switching between enhancer signa-
tures and promoter signatures®'. Luciferase assays showed that these
regions indeed possess both enhancer and promoter activity®, consis-
tent with their epigenomic marks.

While chromatin states were defined at nucleosome resolution (200 bp),
we also studied the overall co-occurrence of chromatin states across
tissues at a larger resolution (2 Mb) to recognize higher-order proper-
ties (Fig. 5d). This analysis revealed that 2-Mb segments rich in active
enhancers are constrained to approximately 40% of the genome (clusters
c1-c6), with the remainder marked predominantly by inactive regions
(c7-c11), consistent with the identification of two large chromatin con-
formation compartments'>*’. However, both compartments can be fur-
ther subdivided by their chromatin state composition: inactive regions
separate into predominantly quiescent (40%, c9, c11), heterochromatic
(10%, c10), or bivalent (10%, c7, c8) marked regions; and active regions
separate into regions rich in multiple marks (c3 and c6, showing alarge
diversity of active, ReprPC and bivalent states), enhancer and weakly
transcribed regions (c5), and regions of intermediate activity (c1, 2, c4).

Figure 5 | Cell-type differences in chromatin
states. a, Chromatin state variability, based on
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These subdivisions were based on average state density across a large
diversity of cell types and showed strong differences in gene density,
CpG island occupancy, lamina association®*** and cytogenetic bands
(Fig. 5d and Extended Data Fig. 5d), suggesting that they represent stable
chromosomal features.

Relationships between marks and lineages

We next studied the relationship between tissues and cell types, based
on the similarity of diverse histone modification marks evaluated in
their relevant chromatin states. Hierarchical clustering of our 111 refer-
ence epigenomes using H3K4mel signal in Enh (Fig. 6a) showed con-
sistent grouping of biologically similar cell and tissue types, including
ES cells, iPS cells, T cells, B cells, adult brain, fetal brain, digestive, smooth
muscle and heart. We also found several initially surprising but biolog-
ically meaningful groupings: fetal brain and germinal matrix samples
clustered with neural stem cells rather than adult brain, consistent with
fetal neural stem-cell proliferation; many ES-derived cells clustered with
ES cells and iPS cells rather than the corresponding tissues, suggest-
ing that those are still closer to pluripotent states than corresponding
somatic states; adult and fetal thymus samples clustered with T cells
rather than other tissues, consistent with roles in T-cell maturation and
immunity. Several marks successfully recovered biologically meaningful
groups when evaluated in their relevant chromatin states (Supplementary
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Fig. 8), including H3K4me3 in TssA, H3K27me3 in ReprPC, and
H3K36me3 in Tx, suggesting that the signal of each mark in relevant
chromatin states is highly indicative of cell type and tissue identity.
These alternative clusterings also showed some differences; for example,
H3K4me3 in TssA states grouped several fetal samples together with
each other, in a cluster neighbouring ES cells and iPS cells, rather than
in separate tissue groups.

We applied this approach to compare the Roadmap Epigenomics re-
ference epigenomes with the 16 ENCODE 2012 samples with broad
mark coverage (Extended Data Fig. 6). We found that H3K4mel signal
in enhancer chromatin states correctly groups primary cells from sim-
ilar tissues across the two projects, emphasizing the robustness of our
annotations and signal tracks across projects (Extended Data Fig. 6a).
For example, NHEK epidermal keratinocytes group with other kera-
tinocytes, HMEC mammary epithelial cells group with other skin cells,
and obsteoblasts and HSMM skeletal muscle myoblasts group with bone
marrow. Some cancer cell lines also grouped with corresponding prim-
ary tissues, including HepG2 hepatocellular carcinoma with liver tissue,
NHLF primary lung fibroblasts with the IMR90 lung fibroblast cell line,
and Dnd41 T-cell leukaemia with thymus, while in other cases cancerous
cell lines grouped together, for example, HeLa-S3 cervical carcinoma
with A549 lung carcinoma. H3K27me3 signal in Polycomb-repressed
states grouped five immortalized cell lines together (Extended Data
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Fig. 6¢), despite their T-cell, lung, cervical, leukaemia and hepatocellular
origins'>®. The larger trees spanning ENCODE 2012 and Roadmap
Epigenomics also highlighted the large number of lineages not previ-
ously covered by reference epigenomes, including brain, muscle, smooth
muscle, heart, mucosa, digestive tract and fetal tissues.

To understand the relationship among different tissue/cell samples
beyond the constraints of a tree representation, we also studied the full
similarity matrix of each mark in relevant chromatin states (Supplemen-
tary Fig. 9) and also visualized the principal dimensions of epigenomic
variation using multidimensional scaling (MDS) analysis (Supplemen-
tary Fig. 10). The pairwise similarity matrices of different marks were
most effective in distinguishing different subsets of the samples, with
H3K4mel in Enh primarily capturing immune cell similarities, and
H3K27me3 in ReprPC capturing pluripotent cell similarities (Supplemen-
tary Fig. 9). In the MDS analysis, the first four dimensions of variation
for most marks separated major sample groups (Extended Data Fig.
7a-1), with some subtle differences between marks. For example, plur-
ipotent cells and immune cells were two strong outliers in the first two
dimensions of H3K4mel variation in Enh (Fig. 6b), but H3K27me3 in
ReprPC showed more uniform spreading of reference epigenomes
(Fig. 6¢), consistent with the coverage distributions of immune and
pluripotent cells for the corresponding chromatin states (Fig. 5b). For
most marks, the first five dimensions captured most of the variance,
with additional dimensions capturing at most 4-6% for each mark (Ex-
tended Data Fig. 7).

Imputation and completion of epigenomic data sets

We exploited the strong relationships between marks and lineages for
epigenomic signal imputation to complete missing marks across remain-
ing tissues, and to complement observed data sets with more robust
predictions based on multiple data sets*. We predicted epigenomic
signal tracks at 25-nucleotide resolution for histone marks, DNA acces-
sibility, and RNA-seq data set and at single-base for CpG methylation,
by exploiting correlations between multiple marks in the same cell
type, and the same mark across multiple cell types.

We predict signal tracks for 34 epigenomic marks in 127 epigenomes,
corresponding to 4,315 imputed genome-wide data sets, of which 3,193
(74%) are only available as imputed data. Imputed tracks showed high
correlation with observed data, provided stronger and more consistent
aggregate statistics relative to gene and TSS annotations, revealed lower-
quality observed data sets in cases of disagreement between imputed
and observed data, and captured cell type relationships and lineage-
restricted information®.

We also used 12 imputed epigenomic marks to learn a 25-state chro-
matin state model jointly across all 127 reference epigenomes, which
distinguished multiple subtypes of enhancer and promoter regions across
the complete set of reference epigenomes, including several active, weak
and transcribed enhancer states, and both upstream and downstream
promoter regions, providing an important reference annotation for
studies of gene regulation and human disease*.

Enhancer modules and their putative regulators

We next exploited the dynamics of epigenomic modifications at cis-
regulatory elements to gain insights into gene regulation. We focused
on 2.3M regions (12.6% of the genome) showing DNA accessibility in
any reference epigenome and regulatory (promoter or enhancer) chro-
matin states, considering enhancer-only, promoter-only, or enhancer—
promoter alternating states separately (Supplementary Fig. 11). We
clustered enhancer-only elements (Enh, EnhBiv, EnhG) into 226 enhancer
modules of coordinated activity (Fig. 7a), promoter-only elements into
82 promoter modules (Supplementary Fig. 11a) and promoter/enhancer
‘dyadic’ elements into 129 modules (Supplementary Fig. 11b), enabl-
ing us to distinguish ubiquitously active, lineage-restricted and tissue-
specific modules for each group. Focusing on the enhancer-only clusters,
we found that the neighbouring genes of enhancers in the same module
showed significant enrichment for common functions* (Fig. 7b and
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Supplementary Fig. 11¢, d), common genotype-phenotype associations®
(Fig. 7c), and common expression in their mouse orthologues (Sup-
plementary Fig. 12), each annotation type showing strong consistency
with the known biology of the corresponding tissues. For example, stem-
cell enhancers are enriched near developmental patterning genes, immune
cell enhancers near immune response genes, and brain enhancers near
learning and memory genes (Fig. 7b). Sub-clustering of individual mod-
ules continued to reveal distinct enrichment patterns of individual sub-
modules (Supplementary Fig. 11e), suggesting increased diversity of
regulatory processes beyond the 226 modules used here.

The genome sequence of enhancers in the same module showed sub-
stantial enrichment for sequence motifs®® associated with diverse tran-
scription factors (Supplementary Fig. 13a). We found 84 significantly
enriched motifs in 101 modules (Extended Data Fig. 8), indicating that
enhancer modules likely represent co-regulated sets, and proposing
candidate upstream regulators for nearly half of all modules. Direct
application of the same approach and thresholds to the putative regula-
tory regions annotated in each of the 111 reference epigenomes led to
significant enrichment for only 10 enriched motifs in 15 reference epi-
genomes (Supplementary Fig. 13b, ¢) of which 8 are blood samples, and
focusing on the regions unique to each of the 17 tissue groups (Fig. 2b)
only led to 19 enriched motifs in 10 tissue groups (Supplementary
Fig. 13d, e), emphasizing the importance of studying regulatory motif
enrichments at the level of enhancer modules.

We next sought to distinguish likely activator and repressor motifs,
by identifying regulators with expression patterns across cell/tissue types
that show a strong (positive or negative) correlation with the activity of
enhancers in the corresponding modules’. We focused on the 40 most
strongly expression-correlated regulators (Extended Data Fig. 9a), and
used the module-level motif enrichments to link each regulator to the
cell/tissue types that define each module (Fig. 8). We found that many
of the inferred links correspond to known regulatory relationships,
including OCT4 (also known as POU5F1) in pluripotent cells, HNF1B
and HNF4A1 in liver and other digestive tissues, RFX4 in neurosphere
and neuronal cells, and MEF2D in muscle. The most enriched regu-
lators showed primarily positive correlations, suggesting that they func-
tion as transcriptional activators, while a subset of factors showed a
negative correlation, with the motif showing enhancer depletion in
the lineages where the corresponding factor is expressed, suggesting a
repressive role. For example, REST (also known as NRSF), a known
repressor of neuronal lineages, showed lowest expression in neuronal
tissues, where its motif was most enriched in enhancers, and a similar
signature was found for ZBTB1B, a known repressor of myogenesis and
brain development.

Regulatory motifs predicted to be drivers of enhancer activity pat-
terns showed significant enrichment in tissue-specific high-resolution
(6-40 bp) DNase digital genomic footprints (DGF)** in matching cell
types (Extended Data Fig. 9b and Supplementary Table 5b), providing
DNA accessibility evidence that the motifs are indeed bound in these
cell types. In addition, they showed positional bias relative to both the
centre of DGF locations and relative to their boundaries (Extended Data
Fig. 10), a property not found for shuffled motifs. These positional
biases were highly tissue- and cell-type-specific for most activating fac-
tors (Extended Data Fig. 9¢), including POU5F1 in iPS cells, MEF2D in
heart, HNF1B in gastrointestinal tissues, BHLH in brain, SPI1 in immune
cells, and MEF2 in heart and muscle, in each case matching the tissues
that showed the highest enrichment. In contrast, for repressive factors
and CTCEF, positional biases were found in large numbers of tissues,
even when the motifs were not enriched in active enhancers. For example,
REST (NRSF) was positionally biased in DGF sites in nearly all tissues
except brain (Extended Data Fig. 9¢), even though it was only enriched
in active enhancers in brain (Extended Data Fig. 9a), consistent with
widespread repressive binding in non-brain tissues.

Overall, these enhancer modules, motif enrichments and regula-
tory predictions provide an unbiased map that can help guide studies
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Figure 7 | Regulatory modules from epigenome dynamics. a, Enhancer
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epigenomes. Vertical lines separate 226 modules. Broadly active enhancers are
shown first. Module IDs are shown in Supplementary Fig. 11c. b, ¢, Proximal

of candidate master regulators for fetal and adult lineage establishment
and cell-type identity.

Impact of DNA sequence and genetic variation

We next studied the impact of primary DNA sequence on the epige-
nomic landscape, across genomic regions and between the two alleles
of a given individual. First, we evaluated whether histone modifica-
tions and DNA methylation can be predicted by the underlying DNA
sequence using DNA motifs for transcription factors expressed in ES
cells and four ES-derived cell types. Using the area under the receiver
operating curve (AUROC), we found between 71% predictive power
for H3K4mel peaks and 98% for H3K4me3 peaks (average of 85% across
six marks and methylation-depleted regions)”'. The most predictive
motifs were those of factors associated with specific histone modifica-
tions or specific cell types, and were found within peak regions enriched
for chromatin marks and at their boundaries. As an example of a bound-
ary enrichment, H3K4me3 peaks were flanked by motifs consisting

Functional enrichment (-log,,?) [ I I
0 1

2 3 4 >4

gene enrichments™ for each module using gene ontology (GO) biological
process (b) and human phenotypes (c). Rectangles pinpoint enrichments for
selected modules. Representative gene set names (left) were selected using bag-
of-words enrichment.

of a continuous stretch of A and T followed by a G and C, which may
have a role in nucleosome positioning or recruiting promoter-associated
transcription factors, such as nuclear receptors. Enhancer and promoter-
predictive motifs were enriched in high-resolution DNase hypersensi-
tive sites (Supplementary Table 5a), suggesting that they correspond to
transcription-factor-bound sequences.

Second, we studied how sequence variants between the two alleles
of the same individual can lead to allelic biases in histone modifications,
DNA methylation and transcript levels. We reconstructed chromosome-
spanning haplotypes for ES cells, four ES-cell-derived cell lines’ and 20
tissue samples®, and we resolved allele-specific activity and structure
for each. We found widespread allelic bias in both transcript levels and
epigenomic marks for each epigenome. For example, 24% of all testable
genes that contain exonic variants demonstrate allelic transcription in
one or more ES cell or ES-cell-derived cell lineages, and the majority of
these genes also exhibit allelic epigenomic modifications in promoters
(71%) and Hi-C-linked enhancers (69%)”. Similarly, as many as 11%
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enrichment (Supplementary Fig. 11) and
correlation between regulator expression and
module activity patterns (Extended Data Fig. 8a)
are used to link regulators (boxes) to their likely
target tissue and cell types (circles). Edge weight
represents motif enrichment in the reference
epigenomes of highest module activity.
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of the testable enhancers display allelic bias in histone modification
H3K27acin the 20 tissue samples with allele-resolved transcription and
chromatin states®'. Allelic histone acetylation at enhancers is highly spe-
cific to individual genotypes, and often occurs near sequence variants
that alter transcription factor binding, suggesting cis-acting sequence
drivers for at least a subset of these regions®”*.

Trait-associated variants enrich in tissue-specific marks
We next used our tissue-specific epigenomic data sets to study the reg-
ulatory annotation enrichments of phenotype-associated variants from
genome-wide association studies (GWAS) of diverse traits and disor-
ders. Previous studies showed that disease-associated variants are en-
riched in specific regulatory chromatin states’, evolutionarily conserved
elements”, histone marks’ and accessible regions'*. We expanded these
analyses using the diversity of primary tissues surveyed by our epige-
nomic maps, applied to a compendium of disease-associated variants
from the NHGRI GWAS catalogue”. We intersected the set of variants
identified in each curated study with peaks of H3K4mel, H3K4me3,
H3K36me3, H3K27me3 and H3K9me3 across each of the 127 epigen-
omes, and H3K27ac, H3K9ac and DNase when available (Extended Data
Figs 11, 12 and Supplementary Table 6), and we searched for significant
enrichment in their overlap relative to what would be expected given
the NHGRI GWAS catalogue as background (see Methods).

For enhancer-associated H3K4mel peaks, we found 58 studies (Fig. 9a
and Extended Data Fig. 11a) with significant enrichments in at least
one tissue at 2% false discovery rate (FDR) (hypergeometric P < 107>°).
Upon manual curation, the enriched cell types were consistent with our
current understanding of disease-relevant tissues for the vast majority
of cases. For example, diverse immune traits were enriched in immune
cell enhancers, including rheumatoid arthritis, coeliac disease, type 1
diabetes, systemic lupus erythematosus, chronic lymphocytic leukaemia,
allergy, multiple sclerosis, and Graves’ disease’**. A large number of
metabolic trait variants are enriched in liver enhancer marks, includ-
ing LDL, HDL, total cholesterol, lipid metabolism phenotypes, and
metabolite levels®>**. Fasting glucose was most enriched for pancrea-
tic islet enhancer marks and insulin-like growth factors in placenta,
consistent with their endocrine regulatory roles®*¢. Several cardiac
traits were enriched in heart tissue enhancers, including the PR heart
repolarization interval, blood pressure and aortic root size. Interest-
ingly, inflammatory bowel disease and ulcerative colitis variants show
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enrichment in both immune and gastrointestinal enhancer marks, sug-
gesting that dysregulation of both organs may underlie disease predis-
position. Both attention deficit hyperactivity disorder and adiponectin
levels were enriched in brain regions, consistent with causal roles in
brain dysregulation®”*. In contrast, late-onset Alzheimer’s disease var-
iants were enriched in immune cell enhancers, rather than brain, con-
sistent with recent evidence of a possible immune and inflammatory
basis® ™",

For active enhancer-associated H3K27ac peaks (available in 98 cell
types), we found a similar number of enriched studies (47 at 2% FDR,
Extended Data Fig. 12b), but for promoter-associated H3K4me3 and
H3K9ac peaks, we found only 25 and 18 enriched studies, respectively
(Extended Data Fig. 12a, b), suggesting that enhancer-associated marks
are more informative for tissue-specific disease enrichments than pro-
moter-associated marks. For DNase peaks, we only found 9 enriched
studies (Extended Data Fig. 12c), partly because they were only avail-
able in 53 reference epigenomes (restricting H3K4mel to the same 53
resulted in 25 enriched studies, Supplementary Table 6), and possibly
due to lack of distinction between enhancer and promoter regions. For
transcription-associated H3K36me3, we found 15 enriched studies (Ex-
tended Data Fig. 12d), indicating that these help capture additional bio-
logically meaningful variants outside annotated promoter and enhancer
regions. In contrast, we found no enriched study for either Polycomb-
associated H3K27me3 peaks or heterochromatin-associated H3K9me3
peaks (Extended Data Fig. 12e, f). These results indicate that enhancer-
associated marks have the greatest ability to distinguish tissue-specific
enrichments for regulatory regions, but promoter-, open-chromatin- and
transcription-associated marks also have numerous significant enrich-
ments, suggesting that disease variants affect a wide range of processes.

These results illustrate that the epigenomic annotations provided
here across a broad range of primary tissues and cells will be of great
utility for interpreting genetic changes associated with complex traits.
We have made all these epigenomic annotations of GWAS regions
publicly searchable and browsable through the Roadmap Epigenome
Browser®” and an updated version of the HaploReg database®.

Discussion

The NIH Roadmap Epigenomics Program has been working to improve
epigenomic assays, generate reference epigenomic maps, and use them
to understand gene regulation, differentiation, reprogramming and
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Figure 9 | Epigenomic enrichments of genetic variants associated with
diverse traits. Tissue-specific H3K4mel peak enrichment significance (—log;o
P value) for genetic variants associated with diverse traits. Circles denote
reference epigenome (column) of most significant enrichment for SNPs
reported by a given study (row), defined by trait and publication (PubMed

human disease (see http://www.roadmapepigenomics.org/publications).
This paper constitutes the first integrative analysis of all the reference
epigenomes generated by the consortium, and represents an early com-
ponent of the International Human Epigenome Consortium (http://
ihec-epigenomes.org/), which seeks to extend such epigenomic maps
to more than a thousand reference human epigenomes™.

In this paper, we use this resource to gain insights into the epigenomic
landscape, its dynamics across cell types, tissues and development, and
its regulatory circuitry. We find that combinations of histone modifica-
tion marks are highly informative of the methylation and accessibility
levels of different genomic regions, while the converse is not always true.
Genomic regions vary greatly in their association with active marks,
with approximately 5% of each epigenome marked by enhancer or
promoter signatures on average, which show increased association
with expressed genes, and increased evolutionary conservation, while
two-thirds of each reference epigenome on average are quiescent, and
enriched in gene-poor and nuclear-lamina-associated stably repressed
regions. Even though promoter and transcription associated marks
are less dynamic than enhancer mark, each mark recovers biologically
meaningful cell-type groupings when evaluated in relevant chromatin
states, allowing a data-driven approach to learn relationships between

23551011

H

identifier, PMID). Tissue (Abbrev) and P value (—log;o) of most significant
enrichment are shown. Only rows and columns containing a value meeting

a FDR of 2% are shown (see Extended Data Figs 11 and 12 for full matrix for
all studies showing at least 2% FDR).

cell types, tissues and lineages. The coordinated activity patterns of
enhancer regions enable us to cluster them into putative co-regulated
modules, which are proximal to genes with common functions and
phenotypes and enriched in regulatory motifs, enabling us to predict
candidate upstream regulators.

We also demonstrate the usefulness of the resulting regulatory anno-
tations for interpreting human genetic variation and disease. In an
unbiased sampling across the GWAS catalogue, we find that genetic
variants associated with complex traits are highly enriched in epigenomic
annotations of trait-relevant tissues, providing insights on the likely
relevant cell types underlying genome-wide significantloci. The GWAS
enrichments in our analysis were strongest for enhancer-associated
marks, consistent with their highly tissue-specific nature. However,
promoter-associated and transcription-associated marks were also
enriched, implicating several gene-regulatory levels as underlying gen-
etic variants associated with complex traits. These results suggest that
our data sets will be valuable in the study of human disease, as several
companion papers explore in the context of autoimmune disorders®*,
Alzheimer’s disease”*”*® and cancer®'®.

Overall, our epigenomic data sets, regulatory annotations and inte-
grative analyses have resulted in the most comprehensive map of the
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human epigenomic landscape so far across the largest collection of pri-
mary cells and tissues. We expect that this map will be of broad use
to the scientific and biomedical communities, for studies of genome
interpretation, gene regulation, cellular differentiation, genome evolu-
tion, genetic variation and human disease.

Online Content Methods, along with any additional Extended Data display items
and Source Data, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS

No statistical methods were used to predetermine sample size.

Data matrix, primary analysis and processing quality control. All genome-wide
maps of histone modifications, DNA accessibility, DNA methylation and RNA ex-
pression are freely available online. Links for raw sequencing data deposited at the
Short Read Archive or dbGAP are available at http://www.ncbi.nlm.nih.gov/geo/
roadmap/epigenomics/. All primary processed data (including mapped reads) for
profiling experiments are contained within Release 9 of the Human Epigenome
Atlas (http://www.epigenomeatlas.org). Complete metadata associated with each
data set in this collection is archived at GEO and describes samples, assays, data
processing details and quality metrics collected for each profiling experiment.

Release 9 of the compendium contains uniformly pre-processed and mapped
data from multiple profiling experiments (technical and biological replicates from
multiple individuals and/or data sets from multiple centres). To reduce redundancy,
improve data quality and achieve uniformity required for our integrative analyses,
experiments were subjected to additional processing to obtain comprehensive data
for 111 consolidated epigenomes (see sections below for additional details). Numeric
epigenome identifiers (EIDs; for example, E001) and mnemonics for epigenome
names were assigned for each of the consolidated epigenomes. Supplementary
Table 1 (QCSummary sheet) summarizes the mapping of the individual Release 9
samples to the consolidated epigenome IDs. Key metadata such as age, sex, ana-
tomy, epigenome class (see Supplementary Table 1, EpigenomeClassSummary sheet),
ethnicity and solid/liquid status were summarized for the consolidated epigenomes.
Data sets corresponding to 16 cell lines from the ENCODE project (with epigenome
IDs ranging from E114 to E129) were also used in the integrative analyses*. All data
sets from the 127 consolidated epigenomes were subjected to processing filters to
ensure uniformity in terms of read-length-based mappability and sequencing depth
as described below.

Each of the 127 epigenomes included consolidated ChIP-seq data sets for a core
set of histone modifications—H3K4mel, H3K4me3, H3K27me3, H3K36me3,
H3K9me3—as well as a corresponding whole-cell extract sequenced control.
Ninety-eight epigenomes and sixty-two epigenomes had consolidated H3K27ac
and H3K9ac histone ChIP-seq data sets, respectively. A smaller subset of epigen-
omes had ChIP-seq data sets for additional histone marks, giving a total of 1,319
consolidated data sets (Supplementary Table 1, QCSummary sheet). 53 epigenomes
had DNA accessibility (DNase-seq) data sets. Fifty-six epigenomes had mRNA-seq
gene expression data. For the 127 consolidated epigenomes, a total of 104 DNA
methylation data sets across 95 epigenomes involved either bisulfite treatment (WGBS
or RRBS assays) or a combination of MeDIP-seq and MRE-seq assays. In addition
to the 1,936 data sets analysed here across 111 reference epigenomes, the NIH
Roadmap Epigenomics Project has generated an additional 869 genome-wide data
sets, linked from GEO, the Human Epigenome Atlas, and NCBI, and also publicly
and freely available.

RNA-seq uniform processing and quantification for consolidated epigenomes.
We uniformly reprocessed mRNA-seq data sets from 56 reference epigenomes that
had RNA-seq data. For RNA-seq analysis, after library construction®®, we aligned
75-bp-long or 100-bp-long reads using the BWA aligner, and generated read cov-
erage profiles separately for positive and negative strand strand-specific libraries.
We used several QC metrics for the RNA-seq library, including intron-exon ratio,
intergenic reads fraction, strand specificity (for stranded RNA-seq protocols), 3'-5'
bias, GC bias and RPKM discovery rate (Supplementary Table 1, RNaseqQCSummary
sheet). We quantified exon and gene expression using a modified RPKM measure®,
whereby we used the total number of reads aligned into coding exons for the nor-
malization factor in RPKM calculations, and excluded reads from the mitochondrial
genome, reads falling into genes coding for ribosomal proteins, and reads falling into
top 0.5% expressed exons. RPKM for a gene was calculated using the total number of
reads aligned into all merged exons for a gene normalized by total exonic length. The
resulting files contain RPKM values for all annotated exons and coding and non-
coding genes (excluding ribosomal genes), as well as introns (Gencode V10 anno-
tations were used). We also report the coordinates of all significant intergenic
RNA-seq contigs not overlapping the annotated genes.

ChIP-seq and DNase-seq uniform reprocessing for consolidated epigenomes.
Read mapping. Sequenced data sets from the Release 9 of the Epigenome Atlas in-
volved mapping a total of 150.21 billion sequencing reads onto hgl19 assembly of
the human genome using the PASH read mapper**. These read mappings were used
(except for RNA-seq data sets, which were mapped as described above) for con-
structing the 111 consolidated epigenomes. Only uniquely mapping reads were
retained and multiply-mapping reads were filtered out. BED files containing the
mapped reads were obtained from http://www.epigenomeatlas.org. Alignment pa-
rameters for each assay type and experiment are specified in the associated publicly
accessible Release 9 metadata archived at GEO. For the ENCODE data sets, BAM
files containing mapped reads were downloaded from http://hgdownload.cse.ucsc.
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edu/goldenPath/hgl19/encodeDCC/. Only uniquely mapping reads were retained
and multiply mapping reads were discarded.

Mappability filtering, pooling and subsampling. The raw Release 9 read alignment
files contain reads that are pre-extended to 200 bp. However, there were significant
differences in the original read lengths across the Release 9 raw data sets reflecting
differences between centres and changes of sequencing technology during the
course of the project (36 bp, 50 bp, 76 bp and 100 bp). To avoid artificial differences
due to mappability, for each consolidated data set the raw mapped reads were uni-
formly truncated to 36 bp and then refiltered using a 36-bp custom mappability
track to only retain reads that map to positions (taking strand into account) at which
the corresponding 36-mers starting at those positions are unique in the genome.
Filtered data sets were then merged across technical/biological replicates, and where
necessary to obtain a single consolidated sample for every histone mark or DNase-
seq in each standardized epigenome. Supplementary Table 1 summarizes the map-
ping of the individual Release 9 primary data sample files to the consolidated data
files corresponding to the 127 consolidated reference epigenomes.

To avoid artificial differences in signal strength due to differences in sequencing
depth, all consolidated histone mark data sets (except the additional histone marks
the seven deeply profiled epigenomes, Fig. 2j) were uniformly subsampled to a
maximum depth of 30 million reads (the median read depth over all consolidated
samples). For the seven deeply profiled reference epigenomes (Fig. 2j), histone mark
data sets were subsampled to a maximum of 45 million reads (median depth). The
consolidated DNase-seq data sets were subsampled to a maximum depth of 50
million reads (median depth). These uniformly subsampled data sets were then used
for all further processing steps (peak calling, signal coverage tracks, chromatin states).
Peak calling. For the histone ChIP-seq data, the MACSv2.0.10 peak caller was used
to compare ChIP-seq signal to a corresponding whole-cell extract (WCE) sequenced
control to identify narrow regions of enrichment (peaks) that pass a Poisson P value
threshold 0.01, broad domains that pass a broad-peak Poisson P value of 0.1 and
gapped peaks which are broad domains (P < 0.1) that include at least one narrow
peak (P < 0.01) (https://github.com/taoliu/MACS/)**. Fragment lengths for each
data set were pre-estimated using strand cross-correlation analysis and the SPP peak
caller package (https://code.google.com/p/phantompeakqualtools/)*” and these frag-
ment length estimates were explicitly used as parameters in the MACS2 program
(-shift-size = fragment_length/2).

For DNase-seq data, we used two methods to identify DNase I accessible sites.
First, the Hotspot algorithm was used to identify fixed-size (150 bp) DNase hy-
persensitive sites, and more general-sized regions of DNA accessibility (hotspots)
using an FDR of 0.01 (http://www.uwencode.org/proj/hotspot)'**. MACSv2.0.10
was also used to call narrow peaks using the same settings specified above for the
histone mark narrow peak calling.

Narrow peaks and broad domains were also generated for the unconsolidated,
36-bp mappability filtered histone mark ChIP-seq and DNase-seq Release 9 data
sets using MACSv2.0.10 with the same settings as specified above.
Genome-wide signal coverage tracks. We used the signal processing engine of the
MACSv2.0.10 peak caller to generate genome-wide signal coverage tracks. Whole-
cell extract was used as a control for signal normalization for the histone ChIP-seq
coverage. Each DNase-seq data set was normalized using simulated background
data sets generated by uniformly distributing equivalent number of reads across
the mappable genome. We generated two types of tracks that use different statistics
based on a Poisson background model to represent per-base signal scores. Briefly,
reads are extended in the 5’ to 3’ direction by the estimated fragment length. At
each base, the observed counts of ChIP-seq/DNase I-seq extended reads overlap-
ping the base are compared to corresponding dynamic expected background counts
(Aocar) €stimated from the control data set. 4jocq is defined as max(Apg, 4116 4510 A10k)
where /g is the expected counts per base assuming a uniform distribution of con-
trol reads across all mappable bases in the genome and Ay, A5y, 410k are expected
counts estimated from the 1 kb, 5 kb and 10 kb window centred at the base. Ac,1 is
adjusted for the ratio of the sequencing depth of ChIP-seq/DNase-seq data set
relative to the control data set. The two types of signal score statistics computed
per base are as follows.

(1) Fold-enrichment ratio of ChIP-seq or DNase counts relative to expected
background counts ¢, These scores provide a direct measure of the effect size
of enrichment at any base in the genome.

(2) Negative log; o of the Poisson P-value of ChIP-seq or DNase counts relative
to expected background counts A,c,. These signal confidence scores provide a
measure of statistical significance of the observed enrichment.

The —log,o(P value) scores provide a convenient way to threshold signal (for
example, 2 corresponds to a Pvalue threshold of 1 X 10~2), similar to what is used
in identifying enriched regions (peak calling). We recommend using the signal con-
fidence score tracks for visualization. A universal threshold of 2 provides good
separation between signal and noise. Both types of signal tracks were also generated
for the unconsolidated data sets using the same parameter settings described above.

©2015 Macmillan Publishers Limited. All rights reserved


http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics
http://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics
http://www.epigenomeatlas.org
http://www.epigenomeatlas.org
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC
https://github.com/taoliu/MACS
https://code.google.com/p/phantompeakqualtools
http://www.uwencode.org/proj/hotspot

ARTICLE

Quality control. For the primary Release 9 data sets, data quality enrichment scores
were computed as the fraction of the uniquely mapped reads overlapping with areas
of enrichment. Several methods were employed to select signal enrichment regions.
The SPOT quality score was computed based on regions identified with the Hot-
Spot peak caller'®’; the FindPeaks quality score was inferred based on peak calls
made using the FindPeaks™ software; finally, a Poisson metric was derived by mod-
elling the read distribution in genome-tiling 1,000-bp windows with a Poisson dis-
tribution and selecting as enriched regions windows with P < 0.05. All the quality
scores in Release 9 are in agreement, with strong pairwise correlation (Pearson
correlation >0.9). Concordance between centres was confirmed and data analysis
pipeline was validated at the outset of the project using data sets for the H1 cell line.
The same pipeline was subsequently used to produce Release 9 data. ChIP-seq data
for six histone modifications (H3K4me3, H3K27me3, H3K9ac, H3K9me3, H3K36me3
and H3K4mel) were independently generated for the H1 cell line by three REMCs
(Broad, UCSD, UCSF-UBC). To quantify concordance, the reads from each exper-
iment were mapped (Level 1 data), read density tracks (Level 2 data) were generated
using the EDACC’s primary data processing pipeline, and finally Pearson correla-
tion coefficients were computed between each pair of experiments, as well as be-
tween experiments and H1 input acting as a control for background correlation
between signals (Supplementary Table 2). The methylome processing pipeline was
characterized experimentally on four independent samples®**.

For the uniformly reprocessed and consolidated ChIP-seq and DNase-seq data
sets, strand cross-correlation measures were used to estimate signal-to-noise ratios
(https://code.google.com/p/phantompeakqualtools/)*”. Data sets for each mark were
rank-ordered based on the normalized strand cross-correlation coefficient (NSC)
and flagged if the scores were significantly below the median value or in the range
of NSC values for WCE extract controls. Consolidated data sets with extremely
low sequencing depth (<10M reads) were also flagged. Each standardized epige-
nome was then manually assigned a subjective quality flag of 1 (high), 0 (medium)
or —1 (low), based on the number of flagged data sets it contained. The SPOT,
FindPeaks and Poisson quality scores were also recomputed for the consoli-
dated data sets. We observed high correlations of the NSC scores with the SPOT
(Pearson correlation of 0.7) and FindPeaks scores (Pearson correlation of 0.65). All
QC measures are provided in Supplementary Table 1 (Sheets QCSummary and
AdditionalQCScores).

To identify potential antibody cross-reactivity or mislabelling issues, a pairwise
correlation heat map (Extended Data Fig. 1e) was computed across all consolidated
data sets for H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K9me3, H3K27ac,
H3K9ac and DNase. We computed the Pearson correlation between all pairs of the
signal tracks based on signal in chromosomes 1-22 and chromosome X. We used
the signal confidence score tracks (—log;(Poisson P value)) where we first com-
puted the average signal scores within each consecutive 25-bp interval. To order the
experiments in the heat map we defined the distance between two pairs of experi-
mentsas 1-correlation value and used a travelling salesman problem formulation'®.
Methylation data cross-assay standardization and uniform processing for con-
solidated epigenomes. We used PASH* alignments for the WGBS and RRBS read
alignments. From the number of converted and unconverted reads at each indi-
vidual CpG the total coverage and fractional methylation were reported. The data
were uniformly post-processed and formatted into two matrices for each chromo-
some. One matrix contained read coverage information for each base (C and G) in
every CpG (row) and for each reference epigenome (column). Another matrix sim-
ilarly contained fractional methylation ranging from 0 to 1. For the locations where
coverage was =3 we considered data as missing. For MeDIP/MRE methylation
data we used the output of the mCRF tool*' that reports fractional methylation in
the range from 0 to 1 and uses an internal BWA mapping. The mCRF results were
combined in a single matrix per chromosome for all reference epigenomes where
available.

Chromatin state learning. To capture the significant combinatorial interactions
between different chromatin marks in their spatial context (chromatin states) across
127 epigenomes, we used ChromHMM v.1.10'%, which is based on a multivariate
Hidden Markov Model.

‘Core’ 15-state model. A ChromHMM model applicable to all 127 epigenomes
was learned by virtually concatenating consolidated data corresponding to the core
set of five chromatin marks assayed in all epigenomes (H3K4me3, H3K4mel,
H3K36me3, H3K27me3, H3K9me3). The model was trained on 60 epigenomes
with highest-quality data (Fig. 2k), which provided sufficient coverage of the dif-
ferent lineages and tissue types (Supplementary Table 1; Sheet QCSummary). The
ChromHMM parameters used were as follows: reads were shifted in the 5" to 3’
direction by 100 bp. For each consolidated ChIP-seq data set, read counts were
computed in non-overlapping 200-bp bins across the entire genome. Each bin was
discretized into two levels, 1 indicating enrichment and 0 indicating no enrichment.
The binarization was performed by comparing ChIP-seq read counts to corres-
ponding whole-cell extract control read counts within each bin and using a Poisson

Pvalue threshold of 1 X 10~ * (the default discretization threshold in ChromHMM).
We trained several models in parallel mode with the number of states ranging from
10 states to 25 states. We decided to use a 15-state model (Fig. 4a—f and Extended
Data Fig. 2b) for all further analyses since it captured all the key interactions between
the chromatin marks, and because larger numbers of states did not capture suffi-
ciently distinct interactions. The trained model was then used to compute the
posterior probability of each state for each genomic bin in each reference epigen-
ome. The regions were labelled using the state with the maximum posterior
probability.

‘Expanded’ 18-state model. A second ‘expanded’ model applicable to 98 epigen-
omes that also have an H3K27ac ChIP-seq data set was learned by virtually con-
catenating consolidated data corresponding to the core set of five chromatin marks
and H3K27ac. The model was trained on 40 high-quality epigenomes using the
same parameters as those used for the primary model (Supplementary Table 1;
Sheet QCSummary). We trained several models with the number of states ranging
from 15 states to 25 states. An 18-state model was used for further analyses (Ex-
tended Data Fig. 2c) based on similar considerations.

State labels, interpretation and mnemonics. To assign biologically meaningful
mnemonics to the states, we used the ChromHMM package to compute the overlap
and neighbourhood enrichments of each state relative to various types of functional
annotations (Fig. 4b, ¢, f and Extended Data Fig. 2b, ¢ and Supplementary Fig. 2).

For any set of genomic coordinates representing a genomic feature and a given
state, the fold enrichment of overlap is calculated as the ratio of ‘the joint prob-
ability of a region belonging to the state and the feature’ versus ‘the product of
independent marginal probability of observing the state in the genome’ times ‘the
probability of observing the feature’, namely the ratio between the (number of bases
in state AND overlap feature)/(number of bases in genome) and the [(number of
bases overlap feature)/(number of bases in genome) X (number of bases in state)/
(number of bases in genome)]. The neighbourhood enrichment is computed for
genomic bins around a set of single-base-pair anchor locations such as transcrip-
tion start sites.

For the overlap enrichment plots in the figures, the enrichments for each ge-
nomic feature (column) across all states is normalized by subtracting the minimum
value from the column and then dividing by the max of the column. So the values
always range from 0 (white) to 1 (dark blue); that s, it’s a column-wise relative
scale. For the neighbourhood positional enrichment plots, the normalization is done
across all columns; that is, the minimum value over the entire matrix is subtracted
from each value and divided by the maximum over the entire matrix.

The functional annotations used were as follows (all coordinates were relative
to the hgl19 version of the human genome): (1) CpG islands obtained from the
UCSC table browser. (2) Exons, genes, introns, transcription start sites (TSSs) and
transcription end sites (TESs), 2-kb windows around TSSs and 2-kb windows
around TESs based on the GENCODEV10 annotation (http://hgdownload.cse.
ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGencodeV10/) restricted to
GENCODE biotypes annotating long transcripts. (3) Expressed and non-expressed
genes, their TSSs and TESs. Genes were classified into the expressed or non-expressed
class based on their RNA-seq expression levels in the HI-ES cells (Fig. 4c) and
GM12878 (Extended Data Fig. 2b) cell lines. A gaussian mixture model with two
components was fit on expression levels of all genes to obtain thresholds for the
two classes. (4) Zinc finger genes (obtained by searching the ENSEMBL annotation
for genes with gene names starting with ZNF). (5) Transcription factor bind-
ing sites (TFBS) based on ENCODE ChIP-seq data in the H1-ES cell line. The uni-
formly processed transcription factor ChIP-seq peak locations were downloaded
from the ENCODE repository: http://hgdownload.cse.ucsc.edu/goldenPath/hg19/
encodeDCC/wgEncodeAwgTtbsUniform/. We also computed percentage transcrip-
tion factor binding site coverage for state calls in the GM12878 and K562 cell lines
using corresponding transcription factor ChIP-seq data from ENCODE which
matched and supported the mnemonics and state interpretations obtained from
the H1 cell line (Supplementary Fig. 2). (6) Conserved GERP elements based on
34 way placental mammalian alignments http://mendel.stanford.edu/SidowLab/
downloads/gerp/ (Supplementary Fig. 3). (7) Enrichment for conserved GERP
elements subtracting parts of the above-mentioned GERP elements that overlap
exons.

Comparison to chromatin states learned on individual epigenomes. We also
learned independent 15-state models individually on each of the 127 epigenomes
using the core set of 5 marks and the same parameter settings as for the primary
model. To compare the individual models to the joint 15-state primary model, we
stacked the emission vectors for all states from all the models and hierarchically
clustered them using Euclidean distance and Ward linkage (Extended Data Fig. 2a).
The individual epigenome models consistently and repeatedly identified states that
were also recovered by the joint model (Extended Data Fig. 2a). Two additional
clusters which included states recovered by the independent models learned in
individual cell types, but not recovered in the joint model, were HetWk, characterized
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by weak presence of H3K9me3, and Rpts, characterized by presence of H3K9me3
along with a diversity of other marks, which was enriched in a large number of
repeat elements.

Expanded chromatin states using large numbers of histone marks. For each of
the seven deeply profiled reference epigenomes (Fig. 2j) we independently learned
chromatin states on observed data for all available histone modifications or var-
iants, and DNase in the reference epigenome. The same binarization and model
learning procedure was followed as for the core set of 5 marks. We chose to con-
sistently focus on a larger set of 50-states to capture the additional state distinctions
afforded by using additional marks (Supplementary Fig. 4). Enrichments for anno-
tations, including some of those described above for the 15-state model, were com-
puted using ChromHMM. The HiC domains were obtained from ref. 107; the
lamina-associated domains are described below; conserved element sets were the
hg19 lift-over from ref. 73; repetitive element definitions were from RepeatMasker.
Relationship between histone marks, methylation and DNase. The distribution
of DNA methylation (per cent CpG methylation from WGBS data) and DNA ac-
cessibility (DNase-seq —log;o(P value) signal confidence scores) was computed
using regions belonging to each of the 15 chromatin states based on the core set of
5 marks and the 18 chromatin states from the expanded model across all reference
epigenomes for which these data sets were available (Fig. 4d, e).

CpGs with a minimum read coverage of 5 were used to calculate the average
methylation percentages within genomic regions labelled with each chromatin
state from the 15-state primary model and 18 state expanded model. Only regions
containing more than 3 CpGs with at most 200 bp between consecutive CpGs were
used. Plots were generated using ggplot2 package for R (v.3.02). The average meth-
ylation levels for the chromatin states across DNA methylation platforms (WGBS,
RRBS and mCRF) were analysed using Standard Least Square models in JMP
(v.11.0; SAS Ins.). The model included the platforms (3 levels), chromatin states
(15 levels) and the interactions (Extended Data Fig. 4).

Calling of lamina-associated domains. Genome-wide DamID binding data for
human lamin B1 in SHEF-2 ES cells were obtained from GEO series GSE22428
(ref. 63). Lamina associated domains were determined using a similar method to
the one described in ref. 64. First, hg18-based data coordinates were converted to
hg19-based coordinates using UCSC’s liftOver tool. Data were smoothed using a
running median filter with a window size of 5 probes, after which domains were
detected by estimating border and domain positions and comparing these to do-
mains defined on 100 randomized instances of the same data set. Parameters are
chosen such that the false discovery rate (FDR) for detected domains is 1%.
Chromatin state variability. For each state s for the core 15-state joint model we
computed the number of genomic bins that were labelled with that state in at least
one epigenome (G;). From among these bins we counted the number of bins (g ;)
that were labelled as being in state s in exactly i epigenomes (i = 1...127). We con-
verted these counts to fractions (g;;/G,) and computed the cumulative fraction
that is consistently labelled with the same chromatin state in at most N epigen-
omes (N =1...127). States whose cumulative fractions rise faster than others
represent those that are less constitutive (more variable). We repeated the same
procedure restricted to 43 high-quality and non-redundant Roadmap epigenomes
(using only 1 representative epigenome from those corresponding to ES cells, iPS
lines or epigenomes for the same tissue type from different individuals and exclud-
ing ENCODE cell lines) (Supplementary Table 1, Sheet VariationAnalysis) (Sup-
plementary Fig. 6a). Analogous analysis was performed on states from the 18-state
expanded model (Extended Data 5a and Supplementary Fig. 6b).

The observed cumulative fractions of cell-type specificity are a function of the
composition of cell types in the compendium and do depend to some extent on
the variability of data quality for the different marks. For example, the enhancer
mark (H3K4me1) does have a much better signal-to-noise ratio than the transcribed
mark (H3K36me3). One might expect this to result in more spurious variation of
states associated with the transcribed mark. However, contrary to this expectation,
the cumulative fractions for states involving only the transcription mark (Tx and
TxWKk) and not the enhancer mark indicate that these states are in fact less variable
and more constitutive across cell types. On the other hand, all states composed of
the enhancer mark (H3K4mel), irrespective of whether they do (TxFInk, EnhG)
or do not (EnhBiv, Enh, BivFlnk, TssAFlnk) include the transcription mark
(H3K36me3), are far more cell-type specific. These observations indicate that the
increased variability of states is largely due to the enhancer mark (H3K4me1) than
the transcribed mark (H3K36me3). As replicates are not available in all epigenomes,
we did not correct for inter-replicate variation in this analysis, but in the state-
switching analysis below we utilize samples from the same tissue as quasi-replicates.
Chromatin state switching. To avoid spurious switching due to differences in data
quality, we restricted this analysis to chromatin states from the 43 high-quality and
non-redundant Roadmap epigenomes (see above). Using the 15 state primary model,
we computed the empirical switching frequency of any pair of states across all pairs
of 43 epigenomes. For a given pair of states A and B, we counted the number of
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genomic bins that were labelled as (A,B) or (B,A) in all pairs of epigenomes. The
switching frequency matrix (which is symmetric) was then row-normalized to con-
vert the switching frequencies to switching probabilities. This is done to avoid a
dependence on the total number of epigenomes. Also, the switching probabilities
unlike switching frequencies are not dominated by states that are highly prevalent
(for example, quiescent state). Supplementary Fig. 7b shows the empirical switch-
ing probabilities for all pairs of states across the 43 epigenomes. To differentiate
between chromatin state dynamics across tissues (inter-tissue) relative to variation
of states across individuals or replicates from the same tissue (intra-tissue), we also
computed analogous switching frequencies by restricting to subgroups of epigen-
omes from the same tissue type (Supplementary Table 1, Sheet VariationAnalysis).
The frequencies were added across all sub-groups and then row-normalized to
switching probabilities. Supplementary Fig. 7a shows the intra-tissue switching pro-
babilities. We then computed the relative enrichment of state switches as the log;o
ratio of inter-tissue switching probability across the 43 epigenomes relative to the
intra-tissue switching probabilities (Fig. 5c). We repeated this analysis on the 16
ENCODE cell lines and obtained similar conclusions regarding relative enrichment
of state switches (Supplementary Fig. 7c). Analogous analyses were performed using
the 18-state expanded model in Roadmap Epigenomics samples (Extended Data
Fig. 5¢) and ENCODE samples (Supplementary Fig. 7d).

Large-scale chromatin structure. To study large-scale chromatin structure we first
calculated ChromHMM (15-state model) state frequencies identified in 200-bp
genome-wide bins across 127 epigenomes. Then we averaged state frequencies over
the 2-Mb genomic regions, thus defining vectors of length 1,458 for each state. The
unsupervised clustering ofa 15 X 1,458 matrix (using Pearson correlation as a sim-
ilarity measure and complete linkage) revealed 11 distinct genomic clusters enriched
in different subsets of chromatin states (Fig. 5d, top heat map). Clusters had different
sizes, with the smallest one (c1) containing only 27 bins, while the largest cluster
(9), occupied predominantly by a ‘quiescent’ state for all epigenomes, had 377 bins.
For each 2-Mb bin in each cluster we calculated average gene density, lamin B1
signal (see section 4 above) and overlap with different cytogenetic bands (Fig. 5d,
bottom, which displays also average levels across each cluster). We also show chro-
mosomal locations of the clusters as well as distributions of CpG island frequency
across the 2-Mb bins in each cluster (Extended Data Fig. 5d).

DMR calls across reference epigenomes. As a general resource for epigenomic
comparisons across all epigenomes for which DNA methylation data is available,
we defined DMRs using the method of Lister et al.'®, combining all differentially
methylated sites (DMSs) within 250-bp of one another into a single DMR and ex-
cluded any DMR with less than 3 DMSs. For each DMR in each sample, we com-
puted its average methylation level, weighted by the number of reads overlapping
it'®. This resulted in a methylation level matrix with rows of DMRs and columns
of samples.

DMRs in hESC differentiation (Fig. 4h). For analysing differentiation of hESCs
in Fig. 4h, we used a second set of DMRs. We used a pairwise comparison strategy
between ES cells and three in vitro derived cell types representative of the three
germ layers (mesoderm, endoderm, ectoderm) and performed DMR calling as pre-
viously described®*. Only DMRs losing more than 30% methylation compared to
the ES cell state at a significance level of P < 0.01 were retained. Subsequently, we
computed weighted methylation levels for all three DMR sets across HUES64, me-
soderm, endoderm and ectoderm as well as three consecutive stages of in vitro
derived neural progenitors (please see accompanying paper*’ for details on the cell
types). Finally, we plotted the corresponding distribution using the R function
vioplot in the vioplot package. In order to identify potential regulators associated
with the loss of DNA methylation at these regions, we determined binding sites ofa
compendium of transcription factors profiled in distinct cell lines and types that
overlapped with each set of hypomethylated DMRs®". Next, we determined a po-
tential enrichment over a random genomic background by randomly sampling 100
equally sized sets of genomic regions, respecting the chromosomal and size distri-
bution of the different DMR sets and determined their overlap with the same tran-
scription factor binding site compendium to estimate a null distribution. Only
transcription factors that showed fewer binding sites across the control regions in
99 of the cases were considered for further analysis. Next, we computed the average
enrichment over background for each transcription factor with respect to the 100
sets of random control regions for each germ layer DMR and report this enrich-
ment level in Fig. 4h right, where we capped the relative enrichment at 12.
Additional DMR calls. For studying breast epithelia differentiation, DMRs were
called from WGBS, requiring at least five aligned reads to call differentially meth-
ylated CpG, and at least three differentially methylated CpGs within a distance of
200 bp of each other*. For studying tissue environment versus developmental
origin, DMRs were called from MeDIP and MRE data using the M&M algorithm®®.
DNA methylation variation. For variation in methylation of each chromatin state
across epigenomes (Fig. 4g and Extended Data Fig. 4f), we first excluded any con-
tiguous chromatin state region containing less than three CpG sites. Then, the mean
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of the methylation level for all contained CpG sites was calculated for each region,
and for each epigenome density values were calculated for these mean methylation
values between 0% and 100%, with density values estimated over n = 1,000 points
with a gaussian kernel, with the default ‘nrd0’ bandwidth from the R stats package
density function. Finally, for each chromatin state, we plotted the In(density + 1)
for each epigenome as rows, with the colour scale set with white as the minimum
In(density + 1) value and red, green, or blue, for WGBS, mCRF and RRBS, respect-
ively, set as the maximum In(density + 1) value in the matrix. Rows were ordered
by the epigenomic lineage and grouping ordering shown in Fig. 2a. In Extended
Data Fig. 4f, epigenomes were first grouped by methylation platform, and then
ordered by Fig. 2a within each platform. The chromatin state methylation profiles
in the cell lines versus primary cells/tissue cells were analysed using a mixed model
with repeated measures. Overall effect of the group (cell lines versus primary cells/
tissue cells) was tested using epigenomes within group as the error term. Testing
for group effect was performed for each of the 15 chromatin states, resulting in a
Bonferroni correction on the P values for the 15 tests.

Identifying coordinated changes in chromatin marks during development. To
identify patterns of coordinated changes of histone marks over enhancers during
heart muscle development, we compared ES cells, mesendoderm cells, and left
ventricle tissue®”. We identified relevant enhancers as those that show changes in
at least one histone mark between a specific cell type cluster (heart muscle in our
case) and other cell types using LIMMA (Linear Model for Microarray Analysis).
We applied FDR-corrected P value significance threshold of 0.05 to obtain cluster-
specific enhancers. For each tissue type (heart muscle in our case) we then clustered
the enhancers into five clusters (C1-C5) based on their multi-mark epigenomic
profiles using the k-means algorithm implemented in the Spark tool (Fig. 4i). The
tools used to generate Fig. 4i are integrated into the Epigenomic Toolset within the
Genboree Workbench and are accessible for online use at http://www.genboree.
org.

Clustering of epigenomes reveals common lineages and common properties.
For each analysed mark, we calculated Pearson correlation values between all pair-
wise combinations of reference epigenomes using the mark’s signal confidence scores
(-log;o(Poisson P value)) within 200 bp of the genomic regions deemed relevant
for that mark. Relevance of regions is determined by whether a region was called in
a particular (mark-matched) chromatin state with posterior probability of >0.95
in any of the reference epigenomes. For H3K4mel, H3K27ac and H3K9ac we used
state Enh; for H3K4me3 state TssA; for H3K27me3 state ReprPC; for H3K36me3
state Tx; and for H3K9me3 state Het, unless otherwise noted (all based on the
15-state core model).

The resulting correlation matrices were used as the basis for a distance matrix
for complete-linkage hierarchical clustering, followed by optimal leaf ordering'*°.
Bootstrap support values are derived from 1,000 random samplings with replace-
ment from all regions considered for a particular mark and a bootstrap tree was
estimated for each resampling. The bootstrap support for a branch corresponds to
the fraction of bootstrapped trees that support the bipartition induced by the
branch.

In parallel to this, all correlation matrices mentioned above were used to per-

form Multi-Dimensional Scaling analyses using R.
Delineation of DNase I-accessible regulatory regions. For each of the 39 Road-
map reference epigenomes with DNase data, peak positions are combined across
reference epigenomes by defining peak island areas, defined by stacking all DNase
peak positions across epigenomes, and considering the full width at half maximum
(FWHM). Note that for this we are only considering peak locations, not intensities.
The goal of this is to obtain an estimate of the area of open chromatin, not to quan-
tify the level of ‘openness’, as these data are not available for all reference epigen-
omes. In cases when peak islands overlap, they are merged because it means that
the original DNase peak area populations overlap at least for half of the epigenomes
with DNase peaks in that area (given the FWHM approach). Peak island summits
are defined as the median peak summit of all peak island member DNase peaks.
This results in a total of 3,516,964 DNase enriched regions across epigenomes.

We then annotate each of the ~3.5M DNase peaks with the chromatin states
they overlap with in each of the 111 Roadmap reference epigenomes, using the
core 15-state chromatin state model, and focusing on states TssA, TssAFInk and
TssBiv for promoters, and EnhG, Enh and EnhBiv for enhancers, and state BivFlnk
(flanking bivalent Enh/Tss) for ambiguous regions. Out of these, ~2.5M regions
are called as either enhancer or promoter across any of the 111 Roadmap reference
epigenomes. Note that because DNase data are not available for all Roadmap epi-
genomes, the set of regulatory regions defined may exclude DNase regions active in
cell types for which DNase was not profiled (Fig. 2g). Although most regions are
undisputedly called exclusively promoter or enhancer, there are 535,487 regions
that needed further study to decide whether they should be called promoters, en-
hancers, or both (‘dyadic’). We arbitrate on these regions by first clustering them
(using the methods in the following section) with an expected cluster size of 10,000

regions, and then for each cluster calculating (a) the mean posterior probabilities
for promoter and enhancer calls separately, and (b) the mean number of reference
epigenomes in which regions were called promoter or enhancer. Clusters of regions
for which the differences in mean posterior probabilities (a) is smaller than 0.05, or
for which the absolute log, ratio of the number of epigenomes called as promoter or
enhancer (b) is smaller than 0.05, are called true ‘dyadic’ regions, along with a small
number of ‘ambiguous’ regions in state BivFInk. Note that this particular clustering
is only to arbitrate on these regions using group statistics instead of one-by-one; the
final clusterings are described next. Overall, we define ~2.3M putative enhancer
regions (12.63% of genome), ~80,000 promoter regions (1.44% of genome) and
~130,000 dyadic regions (0.99% of genome), showing either promoter or enhan-
cer signatures across epigenomes.

Clustering of DNase I-accessible regulatory regions to identify modules of co-
ordinated activity. To cluster regulatory (that is, enhancer, promoter or dyadic)
regions based on their activity patterns across all reference epigenomes, we expressed
each region in terms of a binary vector of length nXs, where # is the number of
reference epigenomes (111) and s is the number of chromatin states considered.
For enhancers and promoters, s = 3, as both of these types of regions are made up
of 3 chromatin states in the 15-state ChromHMM model (enhancers, EnhG, Enh
and EnhBiv; promoters, TssA, TssAFInk and TssBiv).

The thus obtained binary matrices are subsequently clustered using a variation
of a k-centroid clustering algorithm'"'. Instead of Euclidean distance we use a
Jaccard-index-based distance. This is done to be able to correctly cluster highly
cell-type-restricted regions. From a computational point of view, we optimized
the method to both deal with the size of the used data matrices and leverage their
sparsity, to efficiently compute and update distances for matrices with sizes on the
order of 10° X 10, The algorithm has been further modified to converge when less
than 0.01% of cluster assignments change between iterations.

We selected the number of clusters k by tuning the expected number of regions
within each cluster to be approximately 1,000 for promoter and dyadic regions, and
approximately 10,000 for enhancer regions, given their much larger count (81,000,
129,000 and 2.3M for promoter, dyadic and enhancer, respectively). This results in
a value of k = 233 for enhancer clusters (for ~10k elements per cluster), and the
algorithm converged on k = 226 non-empty clusters, which are used for subsequent
analyses.

Clusters are visualized (Fig. 7a) by ‘diagonalizing’ when possible. First, ‘ubiq-
uitous’ clusters (defined as having at least 50% of epigenomes with an enhancer/
promoter density of >25%) are shown. Then, the remaining clusters are ordered
according to which epigenome has the maximum enhancer density.

Enrichment analyses of proximity to gene members of a catalogue of gene sets
(Gene Ontology (GO), Human Phenotype Ontology (HPO)) have been performed
using the GREAT tool™. In particular, the GREAT web API was used to automat-
ically submit region descriptions and retrieve results for subsequent parsing. We
restricted ourselves to interpretation of results with an enrichment ratio of at least
2, and multiple hypothesis testing corrected P values <0.01 for both the binomial
and the hypergeometric distribution based tests.

For visualization of a representative subset of enriched terms in Fig. 7b, ¢, we

select representative terms for display (after diagonalizing the enrichment matrix
by re-ordering the rows). We do this using a weighted bag-of-words approach to
select highly enriched terms that contain many words that are over-represented
in gene-set labels showing similar enrichment patterns. Briefly, sliding along the
row names (gene-set terms) of the diagonalized enrichment matrices, we collect
word counts and multiply these by integer-rounded -log; (g values) obtained from
GREAT. We do this in sliding windows of size 33 for Fig. 7b (resulting in 35 terms)
and size 16 for Fig. 7c (resulting in 15 terms). For each word in a window, these values
are expressed relative to the same words across all row names, registering to what
extent they are over-represented. Each gene-set term in the window is then assigned
a score based on the mean over-representation of all words it consists of. Lastly,
gene sets are co-ranked based on this mean over-representation and their GREAT
significance. The best-ranked gene setlabel is selected as the representative label for
that window. All terms are shown in Supplementary Fig. 11d and are available for
download at http://compbio.mit.edu/roadmap.
Predicting regulators active in each tissue, cell type and lineage. We collected
1,772 known transcription factor recognition motifs (position weight matrices)
from primarily large-scale databases®''*""'” and measured their enrichment in the
enhancers for each enhancer module compared to the union of the 226 enhancer
modules (as described in refs 9,68) using a 0.3 conservation-based confidence
cutoff’®”*. We clustered motifs using a 0.75 correlation cutoff resulting in 300 motif
clusters®® and selected for each motif cluster the motif with the highest enrichment
in any enhancer module for further analysis.

We computed an expression score for each enhancer module and transcription
factor as the Pearson correlation between the transcription factor expression across
cell types with expression data (quantile-normalized log(RPKM) with zeroes
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replaced by log(0.0005)) and the ‘centre’ of a module. For each enhancer module,
its centre is defined as a vector of length 111, containing the fraction of regions in
that module called as (any type of) enhancer in each of the 111 epigenomes ana-
lysed. This expression score is meant to act as the ‘expression’ of a transcription
factor within a module of cell types. We then computed an expression-enrichment
value for each transcription factor as the correlation of this expression score and
the enrichment of the corresponding motif across enhancer modules. The top 40
motifs in terms of their absolute expression-enrichment correlation and the clus-
ters with log, enrichment or depletion of atleast log, = 1.5 for atleast one motif are
shown in Fig. 8 and Extended Data Fig. 8a (only one motif is shown in Fig. 8 for
each factor).

We show all 84 motifs that were significantly enriched (log, = 1.5) in any en-
hancer modules, across the full set of 226 enhancer modules (Supplementary Fig. 13a)
and in the 101 modules in which they were significantly enriched (Extended Data
Fig. 8a). Similarly, we show all 10 enriched motifs across the full set of 111 individ-
ual reference epigenomes (Supplementary Fig. 13b) and specifically in the 15 en-
riched epigenomes (Supplementary Fig. 13¢). Lastly, we show all 19 enriched motifs
across the full set of 17 tissue groups (Supplementary Fig. 13d), and specifically
within the 10 groups that showed significant enrichments (Supplementary Fig. 13e).

For visualization of regulator—cell type links (Fig. 8), we computed edge weights
between each cell type and motif using these motif-module enrichments. For each
motif and cell type, we computed the sum across all modules of the product of the
log, motif enrichment and the value of the cell type within the module centre (only
consider the highly associated cell types by replacing values <0.7 with 0). We show
all resulting edge weights of atleast 1.5 and visualize the network using Cytoscape'*.

Based on the same motif enrichment method mentioned above, we computed

the motif enrichment in the tissue-specific Digital Genomic Footprinting (DGF)
regions in each library. The tissue-specific DGF regions were identified by select-
ing the DGF region occurring in no more than 20 DGF libraries among 42 DGF
libraries. To generate Extended Data Fig. 9b, we standardized the motif enrich-
ment in each library into z-scores for each motif (row) and colour each DGF library
(column) based on their tissue type.
DNA motif positional bias in digital genomic footprinting sites. We computed
the positional enrichment of each driver motif (Extended Data 9c and 10) related
to the digital genomic footprinting (DGF) sites in each cell type (Supplementary
Table 5b). For each driver transcription factor motif, we generated two views cor-
responding to the motif position (the centre of the motif instance) relative to the
centre of closest DGF site (centre view) and the motif position relative to the bound-
ary of closest DGF site (boundary view). We only considered the motif instances
with closest DGF site within 100 bp. For the centre view, we plotted the motif oc-
currence density versus the distance to the DGF centre for different cell types. For
the boundary view, we considered the shortest distance between the centre of a
motifinstance and either side of DGF boundary, and gave a negative distance value
for motif instances inside the DGF, and a positive distance value otherwise. Similar
to the centre view, we plotted the motif density versus the derived distance value in
the boundary view for each cell type.

To access the significance of the motif concentration within DGF in each cell
type, we computed the DGF enrichment ratio as the ratio between the number of
motif instances with distance less than 20 bp to the DGF centre and that number
in the immediate flanking window, that is, the number of motif instances with
distance to the DGF centre larger than 20 bp and smaller than 40 bp. As control,
we randomly sampled the same number of motif instances from the shuffled ver-
sions of the given motif, and obtained the DGF enrichment ratio for the shuffled
motif instances. The DGF enrichment ratio of the true motif is further converted
to z-score by mean and standard deviation from the DGF enrichment ratios of
shuffled motif from 1,000 times random sampling. Then the adjusted P value is
further computed from z-score and Bonferroni correction for number of cell types.
Comparing DGF with DNA motifs that are predictive of epigenomic modifi-
cation. The motifs that were predictive of epigenomic modifications” were com-
pared to DGF in Supplementary Table 5a. This was done in three cell types where
both DGF and predictive motifs were available: ‘H1 BMP4 derived mesendoderm
cultured cells’ (E004), ‘H1 BMP4 derived trophoblast cultured cells’ (E005), and
‘H1 derived mesenchymal stem cells’ (E006). The motifs that were predictive of
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the following seven inputs were considered: H3K27me3, H3K27ac, H3K9me3,
H3K36me3, H3K4mel, H3K4me3 and DNA methylation valleys (DMV)"'". To
identify overlaps the predictive motifs were scanned against the modification peaks
of the corresponding modification and the location of the best match between
motif and sequence was recorded. Then we counted the number of times the lo-
cations of the best motif matches overlapped a DGF by at least 1 bp. These counts
were compared to the number of overlaps identified randomly, which was calcu-
lated by comparing DGF to random locations within the modifications peaks. The
reported random frequency was the average of 100 repeats. To calculate the fold
enrichment we divided the observed frequency by the random frequency.

Tissue-specific activity of disease-associated regions. We tested the enrichment
of SNPs from individual genome-wide association studies (GWAS) for the gapped
peak call sets for histone marks H3K4mel, H3K4me3, H3K36me3, H3K9me3,
H3K27me3, H3K9ac and H3K27ac as well as the DNase peak call set based on
MACS?2 in each reference epigenome where available. The SNPs used were curated
into the NHGRI GWAS catalogue” and obtained through the UCSC Table Browser'"’
on 12 September 2014. We restricted the enrichment analysis to chromosomes
1-22 and chromosome X. We defined a study to be a unique combination of anno-
tated trait and PubMed ID. To reduce dependencies between pairs of SNPs assigned
to the same study, we pruned SNPs such that no two SNPs were within 1 Mb of
each other on the same chromosome. The pruning procedure considered each SNP
in ranked order of P value with the most significant coming first, and we retained a
SNP if there was no already retained SNP on the same chromosome within 1 Mb.
We computed hypergeometric P values for the enrichment of each pruned set of
SNPs overlapping peak calls against the pruned GWAS catalogue as the background.
We estimated separately for each mark a mapping from a P value to a false discovery
rate across tests for all study and reference epigenome combinations by generating
100 randomized versions of the pruned GWAS catalogues, shuffling which SNPs
were assigned to which study and computing the average fraction of reference
epigenome-study combinations that reached that level of significance (in a con-
tinuous mapping of P values to FDR) using randomized catalogues divided by the

number based on the actual GWAS catalogue.
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Extended Data Figure 1 | Tissues and cell types of reference epigenomes.
Comprehensive listing of all 111 reference epigenomes generated by the
consortium, along with epigenome identifiers (EIDs), including: (a) adult
samples; (b) fetal samples; (c) ES cell, iPS cell and ES-cell-derived cells; and
(d) primary cultures. Colours indicate the groupings of tissues and cell types (as
in Fig. 2b, and throughout the manuscript). For five samples (adult osteoblasts,
and fetal liver, spleen, gonad and spinal cord), no colour is present, indicating
that these are not part of the 111 reference epigenomes (ENCODE 2012
samples, or not all five marks in the core set were present), but data sets from
these samples are high quality and were sometimes used in companion paper
analyses, and are publicly available. e, Assay correlations. Heat map of the
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e. Pairwise correlations of all histone marks and DNA accessibility datasets
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pairwise experiment correlations for the core set of five histone modification
marks (H3K4mel, H3K4me3, H3K36me3, H3K27me3, H3K9me3) across all
127 reference epigenomes, the two common acetylation marks (H3K27ac and
H3K9ac), and DNA accessibility (DNase) across the reference epigenomes
where they are available. Yellow indicates relatively higher correlation and blue
lower correlation. Rows and columns were ordered computationally to
maximize similarity of neighbouring rows and columns (see Methods).

All experiments for H3K9me3, H3K27me3, H3K36me3, DNase and H3K4mel
are consistently ordered into distinct and contiguous groups. For H3K4me3,
H3K9ac and H3K27ac, experiments group primarily based on the mark, but in
some cases, the correlations and ordering appear more cell-type driven.
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Extended Data Figure 2 | Chromatin state model robustness and
enrichments. a, Chromatin state model robustness. Clustering of 15-state
‘core’ chromatin state model learned jointly across reference epigenomes
(Fig. 4a) with chromatin state models learned independently in 111 reference
epigenomes. We applied ChromHMM to learn a 15-state ChromHMM model
using the five core marks in each of the 111 reference epigenomes generated
by the Roadmap Epigenomics program, and clustered the resulting 1,680-state
emission probability vectors (leaves of the tree) with the 15 states from the joint
model (indicated by arrows). We found that the vast majority of states
learned across cell types clustered into 15 clusters, corresponding to the joint
model states, validating the robustness of chromatin states across cell types.
This analysis revealed two new clusters (red crosses) which are not represented
in the 15 states of the jointly learned model: ‘HetWK’, a cluster showing
weak enrichment for H3K9me3; and ‘Rpts’, a cluster showing H3K9me3 along
with a diversity of other marks, and enriched in specific types of repetitive
elements (satellite repeats) in each cell type, which may be due to mapping
artefacts. This joint clustering also revealed subtle variations in the relative
frequency of presence of H3K4mel in states TxFInk, Enh and TssBiv, and
H3K27me3 in state TssBiv. Overall, this analysis confirms that the 15-state
chromatin state model based on the core set of five marks provides a robust
framework for interpreting epigenomic complexity across tissues and cell types.
b, Enrichments for 15-state model based on five histone modification marks.
Top left: transcription factor binding site overlap enrichments of 15 states

in H1-ES cells from the ‘core’ model for transcription factor binding sites

(TFBS) based on ChIP-seq data in H1-ES cells. Transcription factor binding
coverage for other cell types based on matched transcription factor ChIP-seq
data are shown in Supplementary Fig. 2. Top right: enrichments for expressed
and non-expressed genes in H1-ES cells and GM12878. Bottom: positional
enrichments at the transcription start site (TSS) and transcription end site
(TES) of expressed (expr.) and repressed (repr.) genes in H1-ES cells.
Transition probabilities show frequency of co-occurrence of each pair of
chromatin states in neighbouring 200-bp bins. ¢, Definition and enrichments
for 18-state ‘expanded’ model that also includes H3K27ac associated with active
enhancer and active promoter regions, but which was only available for 98
of the 127 reference epigenomes. Inclusion of H3K27ac distinguishes active
enhancers and active promoters. Top: TFBS enrichments in H1-ES cells (E003)
chromatin states using ENCODE transcription factor ChIP-seq data in
H1-ES cells. Bottom: positional enrichments in H1-ES cells for genomic
annotations, expressed and repressed genes, TSS and TES, and state transitions
as in Extended Data Fig. 2b and Fig. 4a—c. Right: average fold-enrichment
(colours bars) and standard deviation (black line) across 98 reference
epigenomes (Supplementary Fig. 3d) for the fold enrichment for non-exonic
genomic segments (GERP) in each chromatin state (rows) in the 18-state
model. Excluding protein-coding exons (see Supplementary Fig. 3b versus
Supplementary Fig. 3d), the TSS-proximal states show the highest levels of
conservation, followed by EnhBiv and the three non-transcribed enhancer
states. In contrast, Tx and TxWk elements are weakly depleted for conserved
regions, and Znf/Rpts and Het are strongly depleted for conserved elements.
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‘active’ enhancers show higher levels of DNA accessibility, based on enrichment  associated genes have at least one EnhA1 and/or EnhA2 +20kb from TSS

of DNase-seq signal confidence scores (-log;(Poisson P value)) for elements ~ (18-state model). ‘Weak-enhancer’ genes are associated with EnhG1, EnhG2,
in each chromatin state in our extended 18-state model that includes the core  EnhWk, EnhBiv. Lowest expression have genes that are not associated with
five histone modification marks and H3K27ac, similar to Fig. 4e. b, Level of any enhancer. Plots with red markers show median expression of genes
whole-genome bisulfite methylation for all chromatin states in the 18-state associated with ‘active’ enhancers, yellow markers ‘weak’ enhancers, and white
model shows that H3K27ac-marked ‘active’ enhancers associated with markers no association with any enhancer state. e, Higher-expression genes
H3K27ac in addition to H3K4mel show lower methylation levels, consistent ~ show greater association with H3K27ac-marked ‘active’ enhancers. Highly
with higher regulatory activity. The whiskers in a and b show 1.5X interquartile  expressed genes are consistently more frequently associated with H3K27ac-
range and the filled circles are individual outliers. c, DNA methylation levels ~ marked active enhancers (EnhA1 and EnhA2) across all cell types. Fraction of

for genes showing different expression levels. The depletion of DNA genes associated with H3K27ac-marked ‘active’ enhancers (red), H3K27ac-
methylation in promoter regions, and the enrichment of DNA methylationin  lacking ‘weak” enhancers only (yellow), or no enhancers (white) for genes of
transcribed regions, are both more pronounced for highly expressed genes. varying expression levels in each cell type with RNA-seq data.

The enrichment for high DNA methylation is more pronounced in the 3’ ends
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Extended Data Figure 4 | Methylation relationship with chromatin state.
a-c, DNA methylation levels in 15-state model across technologies. We
observed significant differences in the average methylation levels observed that
were correlated with the different DNA methylation platforms used, but their
relative relationships in average chromatin state methylation were conserved.
Relative to WGBS (panel a, repeated from Fig. 4d for comparison purposes),
RRBS (panel b) showed the lowest overall methylation levels (as expected given
its CpG island enrichment), while mCRF showed the highest (panel c). This
highlights the importance of recognizing and potentially correcting for DNA-
methylation-platform-specific biases before performing integrative analyse.
d, e, Distribution of DNA methylation levels measured using RRBS and mCRF

|
[N

100% -0% 50% 1 00% 0% 50% 100%
T Methylation level

IMR90 fetal lung fibroblasts
H9
HUES64

H1
ES-UCSF4
iPS DF 6.9
iPS DF 19.11

H1 Derived NPCs

hESC Derived Mesoderm
hESC Derived Ectoderm
hESC Derived Endoderm
H1 Derived Mesendoderm
H1 Derived Trophoblast
H1 Derived MSCs

HSCs mobilized Female
Foreskin Keratinocyte
E054 Ganglion Eminence neur
E053 Cortex derived neurosph
E112 Thymus

Brain Hippocampus Middle
Brain Germinal Matrix

Right Ventricle
Aorta

Fetal Intestine Small
Fetal Intestine Large
Small Intestine

H9 Derived Neuron
hESC Derived Endoderm
T cells from cord blood
B cells from cord blood
Hematopoietic stem cells
HSCs mobilized Male
HSCs mobilized Female
Neutrophils

Bone Marrow Deriv MSCs
MSC Derived Chondrocyte
Brain Substantia Nigra
Brain Anterior Caudate
Brain Cingulate Gyrus
Brain Infer. Temporal Lobe
Brain Angular Gyrus

Brain Prefrontal Cortex
Fetal Brain Male

Skeletal Muscle Female
Skeletal Muscle Male
Fetal Heart

Colon Smooth Muscle
Rectal Smooth Muscle
Stomach Smooth Muscle
Colonic Mucosa

Rectal Mucosa

Rectal Mucosa

Stomach Mucosa

PR

T helper memory cells
T helper naive cells
T CD8+ naive cells
Foreskin Fibroblast
Foreskin Fibroblast
- Foreskin Melanocyte
0 | Foreskin Melanocyte
Foreskin Keratinocyte
Foreskin Keratinocyte
VHMEC Mammary Epithelial
Breast Myoepithelial
E054 Ganglion Eminence neur
E053 Cortex derived neurosph
Fetal Brain Female
Fetal Brain Male

Methylation level ~ Methylation level

in 18-state model (defined in Extended Data Fig. 2c). WGBS is shown in
Extended Data Fig. 3b. The whiskers in a—e show 1.5X interquartile range and
the filled circles are individual outliers. f, DNA methylation variation across cell
types. Density plots denote distribution of DNA methylation levels from 0%
to 100% for each chromatin state across the 95 reference epigenomes profiled
for whole-genome bisulfite (WGBS, red), reduced representation bisulfite
(RRBS, blue), or MeDIP/MRE (mCREF, green). The respective colour (red, blue,
or green) was set to the maximum In(density+1) value for each chromatin state
and respective platform, with intermediate values coloured on a natural log
scale. For each panel, the subset of reference epigenomes profiled using each
technology are listed, using the colours, order, and abbreviations from Fig. 2.
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a. Chromatin state variability for 18-state expanded model across 98 epigenomes
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Extended Data Figure 5 | Chromatin state variability, switching and

genomic coverage. a, Variability level for 18-state model. Chromatin state
variability (similar to Fig. 5a), quantified based on the fraction of the genomic
coverage (y axis) of each state (colour) that is consistently labelled with that

state in at most N (ranging from 1 to 98) reference epigenomes, using the
18-state model learned based on 6 chromatin marks, including H3K27ac.
b, Chromatin state over- and under-representation for 18-state expanded

model. ¢, Log-ratio (log;,) of chromatin state switching probabilities for the

18-state expanded model across 34 high-quality, non-redundant epigenomes
that have H3K27ac data, relative to intra-tissue switching probabilities across
replicates or samples from multiple individuals. d, Chromatin state coverage

Chromatin state occupancy cluster (as defined in Fig. 5d)

grouped by epigenomic domains. Top: chromosome ‘painting’ of 11 clusters
shown in Fig. 5d and discovered based on chromatin state co-occurrence at the
2-Mb scale across reference epigenomes. Bottom: enrichment of CpG islands in
each cluster clearly showing higher CpG density ‘active’ clusters 3 and 6
comparing to passive clusters 9-11. Each box plot shows a distribution of
CpG total occupancy in 2-Mb bins in each cluster (with box boundaries
indicating 25th and 75th percentiles, the whiskers extend to the most extreme
data points considered to not be outliers). Points are drawn as outliers if they
are larger than Q3+1.5X(Q3-Q1) or smaller than Q1-1.5X(Q3-Ql), where
Q1 and Q3 are the 25th and 75th percentiles, respectively.
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Extended Data Figure 6 | Hierarchical clustering of epigenomes using respectively. All panels show hierarchical clustering with optimal leaf ordering.
diverse marks. a-e, Clustering of all 127 reference epigenomes, including Colours indicate sample groups, as defined in Fig. 2. Numbers on internal
ENCODE samples, using H3K4mel, H3K4me3, H3K27me3, H3K36me3 and  nodes represent bootstrap support scores over 1,000 bootstrap samples.
H3K9me3 signal in Enh, TssA, ReprPC, Tx and Het chromatin states,

©2015 Macmillan Publishers Limited. All rights reserved



ARTICLE

a dim 1vs. 2 dim 3 vs. 4 g dim 1vs. 2 dim3vs. 4
. - .
- o5t - . N
S ’ So -
c 0 = 8
o9 n = /
28 . . Muscle . o 8 IS
— % Th GE) % .—%w. s e-"%?‘ :
O ~ . x IR
e Bl e (C%I— . Epit.‘~i.M o
< o o N - IMR90| My;;e.
X c ' ™ ®- >~ Neurosph
C]":) = Mesfnch T J
Myosat
b dim 1vs. 2 dim 3 vs. 4 h . dim 1vs. 2 dim3vs. 4
. ¢
2 eS|
© Y @ jdeart / 2
n < | TRuin. - Muscle®g -
g) o o ) Bithelial .§ ithelial
D = X Opidive Thigastve
»n 8 y
) “(77 g 8.) \ ~ lﬁéle Esmther
] A
E ﬁ) UI) -8 \ Digestive “ﬁhm‘
N <ZE O Bl T oper e WholeBlood ®
X M 7
c T-gell /
™o cl|° o £ % .
I |-  #Miscle Wm%ﬂé‘ Beell °
PAR) 3 . ./ ¢ Tl
dim 1vs. 2 dim 3vs. 4 I. dim 1vs. 2 dim 3 vs. 4
c. ; ;
T 0 Epithelial g ® WhleBlood
gj Q > Q ‘
=D
D 8 » © o Beell e
” [Se 37
% 8 ° QE) 6 P4 hyrﬂ‘lbggstiv%
Ni
Ex o Ije ° RSthelial
~ Q v .
g &) \ I35} E —®  Myasat
e T \ .
<£ E IMR90 ° \'
| e
mysgeneh-e 4 .
d dim 3 vs. 4 dim 1vs. 2 dim 3 vs. 4
.
r— Digestive
g, ;
o2
3 7 | o -Brain .
©
~ £ J-
AN w ES-deriv
X 4 100% RNAseq
® .E L) H3K4me3
I DNasel
’Fc 90% 1 H3K9ac
J&sc H3K27ac
e dim 1 vs. 2 dim 3 vs. 4 80% ____ . HaKame
. e e
PsC 70% H3K9Ime3
© » HgpleBlood Other . . )
c o Ag Bran @
o = C cnon—
Repiyot ‘ £ 60%
5 3 /| s
o 1] | e/&’m:h [=%
@ < i <>1§ o] H3K4me1 in Enh state
(S el N Top 5 MDS dimensions T H3K4mes3 TssA state
an 5} o alive varinnen == H3K27me3 in ReprPC state
™ S explained (Fig. S1, $10) = H3K36me3 in Tx state
T - -= 40% === H3K9me3 in Het state
Cg === H3K27ac in Enh state
° === H3K9ac in Enh state
3 30% - @== DNasel
RNAseq
f dim 1vs. 2 dim3vs. 4
20%]
. Wholmu,,,,,. A\ °
_ @ | Thymus Mascle Digestive Variance captured by
[ = e . . . . Bfain 10%- 6th MDS dimension
gj S . -gmn,gr Brain " E (4-6% for histone marks)
= C Pad i eart _: o —_—
® g ) Epitiirip Other Miscle 0% —t : - :
o > ¢ 1 5 10 15 20
8 7] , L % By Number of dimensions
Z g Es-qériv ! al
@)
© ESC . Thymus
) / WholeBlood
J
Esc < .
Extended Data Figure 7 | Multi-dimensional scaling (MDS) analysis. Methods). j, Variance explained by each MDS dimension. The first five dimensions
a—i, MDS plots showing reference epigenome distances using similarity of different  shown in Supplementary Fig. 10 (Fig. 6b, c) explain between 45% and 80% of the
epigenomic marks in corresponding chromatin states. Reference epigenomes total epigenome-to-epigenome variance for all histone modification mark
(dots) are coloured according to their group colouring defined in Fig. 2b. Thinlines  correlations, and additional dimensions explain less than 10%. Only a few
connect same-group reference epigenomes. The first four axes of variation are components of H3K4me3 in TssA chromatin states explains a much larger fraction

shown in pairs. Marks are assessed in regions with relevant chromatin states (see  of the variance than other marks, possibly due to its stability across cell types.

©2015 Macmillan Publishers Limited. All rights reserved



ARTICLE

na 0o o omin

— 0
5 ounk

O Mo g R0

nts (n=101 of 226)

EE R 0 o

N_ninsoo_om
3

ancer modules with significant motif enrichm

a @R ¥
BHLHEA1 T
SPIT
—_
<
(e ]
1]
c
-
%)
2
c
(]
£
ey
=]
=
c
(V]
=
c
©
ES
c
.20
]
ey
h=4
2
2
5
o
S
>
-
[e]
=}
o
=]
=T}
[J)
o
b. mrso

ESC

iPSC

ES-deriv

Adipose

Muscle

Heart

e

£56
et

98 e oo 5
5
2

Gl-tract

Extended Data Figure 8 | Regulatory motif analysis for modulesa.
Regulatory motifs enriched in enhancer modules. Enrichment (red) or
depletion (blue) of regulatory motifs (rows) in the enhancer modules (columns)
relative to shuffled control motifs. For each motif is shown the motif name,
consensus logo, and correlation between regulator expression and module
activity: positive correlation (orange) is indicative of activators, and negative

| | TF/motif correlation
R - o« e

Regulatory motif enrichment

Cluster coefficient

correlation (purple) indicates a repressive role for the factor. Only clusters with
log enrichment or depletion of at least 1.5-fold for one motif are shown.

b, Average activity level of enhancers of each module in each reference
epigenome (black, high; white, low). ¢, Total size of each enhancer module
showing enrichment (in kb).
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Extended Data Figure 9 | Regulatory motif enrichment, DGF enrichment
and positional bias for predicted driver motifs. a, Regulatory motif
enrichments for the 40 regulators showing the strongest absolute correlation
between transcription factor expression and module activity. Of these, 36 were
also recovered solely based on their motif enrichment scores (Extended

Data Fig. 8), but 6 motifs showing significant and biologically relevant
correlations were not discovered solely based on their motif enrichment
(Esrra_4, Max_4, Mga_3, Nfatcl_3, Rest_2 and Tead3_1), illustrating the
importance of studying motif enrichments in the context of transcription factor

Regulatory motif enrichment

TF/motif correlation

expression and enhancer activity patterns. b, Predicted driver regulatory motifs

(row-normalized per motif)

min 0 max

are enriched in high-resolution DNase footprints. Enrichment of predicted
driver motif instances (Fig. 8 and Extended Data Fig. 9a) in 42 high-resolution
(6-40bp) DGF libraries from deeply sequenced DNase data sets*” shows
consistent tissue preferences in matching cell types. For example, POU5F1 in
iPS cells, HNF1B and HNF4AL1 in digestive tissues, RFX4 in neural lineages,
MFE2B in muscle. ¢, Matrix of significant positional bias across factors and cell
types. For each DGF data set (columns), positional bias score (heat map) of
predicted driver regulatory motifs (rows) found to be significantly enriched
(Fig. 8 and Extended Data Fig. 9a) in enhancer modules (Fig. 7a).
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Extended Data Figure 10 | Positional biases of predicted driver motifs
relative to high-resolution DNase footprint centres and boundaries.

a, Driver transcription factor motif instance logo, as in Fig. 8 and Extended Data
Fig. 9a. b, Distribution of motif instances relative to the centre of the high-
resolution DNase sites (DGF lengths range from 6 bp to 40 bp), each curve
coloured according to the cell/tissue type (from Fig. 2 and Supplementary
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Extended Data Figure 11 | Epigenomic enrichments of genetic variants
associated with diverse traits. Tissue-specific enrichments for peaks of
epigenomic marks for genetic variants associated with complex disease,
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FDR = 0.02 threshold. b, H3K27ac peaks (active enhancers). a, b, Studies were
defined by a set of SNPs annotated in the GWAS catalogue with the same
combination of a publication (shown by the Pubmed ID) and trait. Epigenome

expanding Fig. 9. Enrichments are shown for: a, H3K4mel peaks (enhancers).  with maximum enrichment, uncorrected —log;, P value and estimated FDR
This panel includes all the data shown in Fig. 9, but expands the enrichments  are indicated.
shown to all reference epigenomes (columns) for studies (rows) that met the
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Extended Data Figure 12 | Epigenomic enrichments of genetic variants e, f, H3K27me3 peaks (Polycomb-repressed regions, e) and H3K9me3 peaks
associated with diverse traits. Tissue-specific enrichments for peaks of (heterochromatin regions, f) do not show any enrichments at the FDR = 0.02
epigenomic marks for genetic variants associated with complex disease, similar  threshold. As for Extended Data Fig. 11, studies were defined by a set of

to Extended Data Fig. 11 except enrichments are shown for: a, H3K4me3 peaks ~ SNPs annotated in the GWAS catalogue with the same combination of a trait
(promoters); b, H3K9ac peaks (active promoters and active enhancers); (far left column) and publication shown by the Pubmed ID (far right column),
¢, DNase peaks (accessible regions); d, H3K36me3 peaks (transcribed regions);  uncorrected P value (in -log;) and estimated FDR.
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