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ABSTRACT
Users increasingly depend on WLAN for business and enter-
tainment. However, they occasionally experience dead spots
and high loss rates. We show that these problems can be
addressed by exposing information readily available at the
physical layer. We introduce SOFT, a new architecture that
makes the physical layer convey its confidence that a partic-
ular bit is “0” or “1” to the higher layers. Access points that
hear the same transmission communicate their confidence
values over the wired Ethernet and combine their informa-
tion to correct faulty bits in a corrupted packet. A single
receiver may also combine the confidence estimates from
multiple faulty retransmissions to obtain a correct packet.
We implement SOFT and evaluate it using GNU software
radios. The results show that our approach can reduce loss
rate by up to 10x in comparison with the current approach,
and significantly outperforms prior packet combining pro-
posals.

Categories and Subject Descriptors
C.2.2 [Computer Systems Organization]: Computer-
Communications Networks

General Terms
Algorithms, Design, Performance

Keywords
Wireless Networks, Cooperative Receptions, Diversity Com-
bining

1. INTRODUCTION
Wireless networks can suffer from high packet loss. In

some deployments the mean loss rate is as high as 20-40% [4,
19], and even when average packet loss is low, some users
suffer from poor connectivity. Current wireless networks at-
tempt to recover from losses using retransmissions. However,
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in lossy environments, retransmissions often have errors and
effectively waste the bandwidth of the medium, cause in-
creased collisions, and fail to mask losses from higher layer
protocols. As a result, today a lossy network is barely use-
able.

Wireless networks, however, inherently exhibit spatial di-
versity, which can be exploited to recover from errors. A
sender in a WLAN is likely to have multiple access points
(APs) in range [3, 5]. It is unlikely that all these APs see
errors in the same parts of a transmitted signal [18]. Con-
sider an extreme scenario where the bit error rate is about
10−3 and the packet size is 1500B (i.e., 12000 bits). In this
case,1 the probability that an AP correctly receives a trans-
mitted packet is 0.99912000 ≈ 10−5. Say there are two APs
within the sender’s range, and the bit errors at the APs are
independent [18]. If one can combine the correct bits across
APs to produce a clean packet, the delivery probability be-
comes 0.99.2 The problem, however, is that when multiple
APs differ on the value of a bit, it is unclear which AP is
right. A prior cooperation proposal attempts to resolve con-
flicts between APs by trying all possible combinations and
accepting the combination that satisfies the packet check-
sum [17]. Such an approach, however, has an exponential
cost, limiting its applicability to packets with only a hand-
ful of corrupted bits.

This paper presents SOFT, a cross-layer architecture for
recovering faulty packets in WLAN. Current physical layers
compute a confidence measure on their 0–1 decision for each
bit. But due to the limitation of the interface between the
physical and data link layer, this confidence information is
thrown away. SOFT introduces a simple modification of the
interface to export this confidence measure from the phys-
ical to the data link layer. It shows that this new interface
can combat dead spots and dramatically increase the packet
delivery rate.

SOFT works by combining confidence values across mul-
tiple faulty receptions to recover a clean packet.

• On the uplink, SOFT leverages the abundance of wired
bandwidth in comparison to wireless bandwidth. Access
points that hear a particular transmission communicate
over the local Ethernet and combine their confidence es-

1802.11b does not use FEC and hence one faulty bit corrupts
a whole packet.
2The probability of having a corrupted bit at both APs is
10−6. Assuming independence, the probability that by com-
bining the bits across APs one gets a fully correct packet is
(1 − 10−6)12000 = 0.99.

147



timates to maximize the likelihood of correctly decoding
a corrupted packet.

• Similarly, on the downlink, a node that receives a faulty
packet combines the received packet with a later poten-
tially faulty retransmission to obtain a correct packet.
This strategy eliminates the need for any one retransmis-
sion to be completely correct, thus drastically reducing
the number of retransmissions in a lossy environment.

One engineering challenge in the design of SOFT is to
identify the strategy that maximizes the likelihood of cor-
rectly reconstructing a packet from multiple faulty recep-
tions. Say that we have multiple receptions of the same
packet annotated with physical-layer confidence values, but
they do not agree on the value of the i th bit in the packet.
How should one resolve the conflict? One could take a ma-
jority vote. Alternatively, one could assign to the bit the
value associated with the highest confidence. Both of these
strategies are suboptimal, and may be even destructive. For
example, some of the cooperating APs may be affected by
a collision or a microwave signal, and thus end up polluting
the information rather than enhancing it. By estimating the
noise variance at each receiver and taking it into account,
we do better than the above strategies. We demonstrate an-
alytically and show experimentally the superiority of this
approach.

We have built SOFT in GNU software radios [6] and de-
ployed it in a 13-node testbed. Software radios implement
the whole communication system in software, making them
an ideal environment for developing and testing cross-layer
protocols. Our experimental results reveal the following find-
ings.

• SOFT provides large boosts to wireless reliability. In en-
vironments with moderate to good delivery rate, SOFT
almost eliminates any packet loss over the wireless chan-
nel. In environments with high loss rates, SOFT increases
the delivery rate by an order of magnitude.

• SOFT shows significantly higher delivery rates than prior
cooperation proposals that do not use physical layer infor-
mation. It can provide up to 9-fold reduction in loss rate,
as compared to MRD [17].

• SOFT also reduces the number of retransmissions. In lossy
networks, with just one retransmission, SOFT achieves
94% reliability, while it takes the current approach 18 re-
transmissions to obtain similar performance.

• Confidence values can be expressed using only few bits (3-
bits in our results), keeping the overhead of communicat-
ing them over the Ethernet within an acceptable bound.

2. RELATED WORK
Related work falls in two areas.

(a) Spatial Diversity. Spatial diversity, i.e., combining in-
formation from multiple antennas to boost throughput, is
a highly active area [10, 16, 20, 21]. Some work is purely
theoretical with no system implementation or experimental
results [16, 20]. The main difficulty in implementing these
theoretical proposals is their reliance on tight synchroniza-
tion across nodes. Thus, practical systems that exploit spa-
tial diversity usually operate with multiple antennas on the
same card (i.e., MIMO systems) [21].

Work on diversity also appears in the area of soft-handoff
in CDMA cellular networks [24]. While a mobile phone is

moving from one cell to another, the two base stations trans-
mit the same information to the mobile phone and listen to
the phone’s signal. The stronger signal is utilized for each
frame in the call or both signals are combined to produce a
clearer copy of the signal. Combining the signals is termed
softer handoff and is possible when the cells involved in the
handoff have a single cell site (i.e., they are the same node).
Further, a few theoretical works compute the capacity im-
provements from combining 802.11 signals in a way similar
to CDMA networks [9, 22].

SOFT is inspired by signal combining technologies used
in RAKE receivers and softer handoff in CDMA cellular
networks [24]. SOFT, however, does not combine signals; it
combines confidence values associated with individual bits.
We believe that it is not practical for APs to communicate
to each other the details of their physical signals and channel
functions. The overhead will be excessive and the system will
work only when the APs have the same design.3 In contrast,
SOFT defines a simple interface between the physical and
datalink layers; each bit is assigned a normalized confidence
value that can be expressed with a few bits (3 bits in our
results). This interface limits the communication overhead
over the wired Ethernet, simplifies the combining algorithm,
and allows a receiver on the downlink to combine multiple
receptions even if they were sent at different 802.11 bit rates,
and thus with different modulation schemes.

The closest work to ours is by Miu et al. [17], who propose
combining receptions from multiple access points to recover
faulty packets. Their work does not use physical layer in-
formation. It divides the packet into multiple blocks. When
the access points receive conflicting blocks, this proposal at-
tempts to resolve the conflict by trying all block combina-
tions and checking whether any of the resulting combina-
tions produce a packet that passes the checksum. The over-
head of their approach is exponential in the number of er-
roneous blocks and thus too costly when there is significant
loss. Our experimental results in §9.4 compare against their
approach and demonstrate the importance of using physical
layer information.

(b) Soft Decoding. The use of confidence values in de-
coding is usually referred to as soft decoding. Prior work in
information theory has discussed soft decoding and applied
it to various codes including Reed Solomon and LDPC [12,
11, 23]. The Viterbi decoding algorithm has a soft exten-
sion (SOVA) that includes physical information as a priori
probabilities of the input symbols [13]. Also, HARQ and
Chase combining advocate that a receiver saves a corrupted
packet and combines it with a later retransmission [8, 2].
SOFT presents a systems architecture for reliable WLAN
that is inspired by soft decoding. It pushes soft decoding
up to higher layers and incorporates it within a cooperative
design where multiple APs work together to recover faulty
packets. Furthermore, it focuses on practical networking is-
sues, such as compatibility with current applications and
unmodified APs and cards, and provides an implementation
and experimental results.

Concurrently, another group has proposed the use of soft
information but for a different purpose [15]. They use the

3For example, sending signal samples corresponding to the
DSSS chips used in 802.11b will increase the Ethernet over-
head by an order of magnitude. Over-sampling and the res-
olution of the ADC further increase this overhead.
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Figure 1: SOFT’s System Architecture. On the uplink, mul-
tiple APs may hear the transmission of the wireless client. They
communicate their confidence in the received bits to the SOFT
Combiner. SOFT combines their information to reconstruct a
clean packet from multiple faulty receptions.

soft information to find incorrect chunks in a packet and
retransmit them. In contrast, our work reconstructs correct
packets by combining soft information across multiple er-
roneous receptions. In principle, the two projects are com-
plementary; one may retransmit only the faulty chunks in
a packet and also combine multiple faulty receptions of a
chunk to reconstruct a correct version.

3. SOFT’S SYSTEM ARCHITECTURE
SOFT’s design targets wireless LAN deployments in a uni-

versity or corporate campus. In a large campus, a user is
likely to hear multiple access points operating on the same
802.11 channel [3]. Often when suffering from poor connec-
tivity, a user will be between APs. SOFT allows these APs
to cooperate to recover corrupted packets, exploiting space
diversity. SOFT also exploits time diversity by combining
bits in a faulty packet with bits in later potentially faulty
retransmissions. Combining packets with their retransmis-
sions occurs on both the uplink and downlink.

For simplicity, we describe our ideas within the context of
binary modulation, where a symbol refers to one bit. Our
algorithm and lemmas can be easily extended to other mod-
ulation schemes, as discussed in the appendix.

3.1 An Interface That Returns Soft Values
SOFT sits below the MAC, between the physical layer and

the data link layer. It modifies the interface between the two
layers. Instead of returning 0’s and 1’s, the physical layer
returns for each bit a number in [−1, 1], which we call a soft
value (SV). The SV gives us an estimate of how confident
the physical layer is about the decoded bit. The decoded bit
is zero when the corresponding SV is negative, and is one
otherwise. The smaller the absolute value of the soft value,
the less confident the physical layer is in whether the sent
bit is 0 or 1.

SOFT associates soft values with each bit, we refer to this
replacement of bits with their corresponding soft values as a
soft packet or s-packet. The data link layer in SOFT decodes
such s-packets to obtain the transmitted packets. Except for
some details, the decoding algorithm is similar for the uplink
and the downlink scenarios.

Although the details of the physical layer differ across
technologies and within the same technology, all physical
layer design can easily expose an SV for each decoded
bit/symbol. Generally speaking, the function of a wireless

receiver is to map a received signal to the symbol that was
transmitted. To do so, the receiver computes a soft value
from the received signal for each symbol, which is a real
number that gives an estimate of the transmitted symbol.
The receiver then maps the soft value to the symbol which
is closest to it. For example, when the symbols correspond
to a single bit, the soft value is decoded to a “1” bit if it
is positive and “0” otherwise. The soft value can be easily
generalized to systems where each symbol represents more
than one bit.

3.2 Uplink
Figure 1 shows the SOFT architecture on the uplink. It is

designed to exploit spatial diversity through the cooperation
of several access points. Each AP in the WLAN infrastruc-
ture offers a different communication channel to the client.
We leverage the comparatively high bandwidth of the wired
Ethernet connecting the access points. Each AP forwards
all s-packets including those that are corrupted to the com-
bining agent. The combining agent is a logical module, that
may reside on one of the access points or on a different ma-
chine on the local Ethernet, and can be thought of as an
uber-access point.

The combining agent invokes the packet combining pro-
cedure only for corrupted packets. The agent first needs to
identify the set of s-packets (received at different APs) that
correspond to the same transmitted packet. To do this, it de-
codes the header of each s-packet to determine the packet-id
of the transmitted packet. Packet-id is a pseudo random se-
quence assigned by the transmitter to each packet and main-
tained across retransmissions. S-packets having the same
packet-id correspond to receptions of the same packet or its
retransmission at different APs. The combining agent keeps
this set of packets corresponding to the same transmission in
a hash table that is keyed by the packet-id. Headers, which
include the packet-id, are encoded with a lot of redundancy,
hence they are highly likely to be received with no errors.
Packet-ids are therefore assumed to be received with little
error.

The next step for the combining agent is decoding. When
an s-packet arrives at the agent, we face one of two situa-
tions: 1) The arriving packet is uncorrupted, i.e., it passes
the 802.11 checksum. In this case, the packet is forwarded
toward its IP destination and other packets with the same
packet-id are dropped. 2) The packet is corrupted, in which
case all the packets with the same packet-id are passed to
the combining algorithm (described in §4), to attempt to
correct the faulty bits. If the combining algorithm succeeds,
the correct packet is forwarded and the packets are deleted
from the hash table. If the combining algorithm fails, the
agent waits for new soft-packets with the same packet-id.

We note that the combining agent also keeps a hash table
of packet-ids for recently forwarded packets. When a new
packet arrives, the agent checks the table to see whether
a packet with a similar id has been correctly forwarded, in
which case the new packet is ignored. This eliminates redun-
dant forwarding. Finally, old soft-packets that were never
recovered are dropped after a timeout.

3.3 DownLink
SOFT’s design for the downlink exploits time diversity.

Faulty s-packets are stored and combined with later re-
transmissions to increase the overall potential of recovery.
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The process of combining multiple faulty transmissions to
correct bit errors is similar to that of combining s-packets
across APs, except that the combining agent in the case of
the downlink runs on the client node itself.

3.4 ACKs Retransmissions and Reordering
SOFT modifies the transmitter and receiver modules. If

a SOFT receiver has the next-hop MAC address, it im-
mediately acks correctly received packets using 802.11 syn-
chronous acks. For each 802.11 ack-ed packet, the receiver
communicates the correct reception to the combining agent
to allow it to discard the s-packets corresponding to the ack-
ed packet. On the other hand, if the packet is faulty or if the
receiver is not the intended next-hop, it communicates the
s-packet to the combining agent. The agent stores faulty re-
ceptions and uses them to reconstruct a clean version of the
packet as described above. If the reconstruction succeeds,
the agent sends an asynchronous ack to the sender with the
packet-id. The lack of an ack causes the sender to timeout
and retransmit the packet.

After transmitting a packet, the SOFT sender waits for
an ack. If it receives a synchronous 802.11 ack, it moves
on to the next packet waiting transmission. Otherwise, the
packet may need to be retransmitted which happens when
the combining agent at the receiver fails to recover a clean
copy. The retransmission strategy varies between the uplink
and downlink.

In the case of the uplink, SOFT disables link-layer re-
transmissions to allow the combining agent enough time to
recover packets that the APs receive in error. Specifically,
since cooperation requires the APs to communicate over the
wired LAN, it is not possible to recover a corrupted packet
within the time limit for sending a synchronous 802.11 ack.
Thus, SOFT WLANs operate in 802.11’s unicast mode but
with no retrials. The SOFT sender stores unack-ed packets
in a hash table keyed on the packet-id. Whenever it receives
an asynchronous ack, it looks up the ack-ed packet-id in
its table, removes the corresponding packet, and resets any
scheduled retransmissions for that packet. Packets stored in
the un-acked hash table are retransmitted every retrans-

mit_interval. The value of the retransmit_interval de-
pends on the wireless technology and the bit rate. It should
take into account the communication time between the APs
and the combining agent over the wired LAN, the time to
retransmit an asynchronous ack over the WLAN, and any
potential congestion. We estimate this time using an expo-
nentially moving average in a manner similar to the TCP
RTT estimate. The retransmit_interval is set to the av-
erage estimate plus one standard deviation.

On the downlink, the retransmission strategy can be sim-
plified since packet recovery does not involve any communi-
cation between nodes. In particular, we envision that SOFT
will be implemented in hardware on the wireless card it-
self. In this case, we believe SOFT can check whether a
packet is recoverable via combining with prior receptions
very quickly.4 The combining algorithm can be executed

4Our combining algorithm in §4 uses a weighted sum of the
s-packets. Thus, there is no need to keep all s-packets. The
sum can be constructed incrementally as more receptions
arrive. Combining requires only combining the most recently
received s-packet with the weighted sum of prior s-packets,
which can be quite fast. Thus, the card needs not maintain
more than an s-packet worth of memory.

within a SIFS (i.e., 28 microseconds), and the receiver can
immediately send an 802.11 ack if it is able to reconstruct
the packet. Thus, the transmitter on an AP can use the
current strategy for retransmission.

There is no reordering on the downlink. On the uplink,
the combining agent puts packets in order before forward-
ing them. Each packet-id is assigned a timestamp that cor-
responds to when the agent first saw that id. The agent
ensures that forwarded packets leave in the same order as
their ids arrived at the agent for the first time. The agent
has a variable, called forwarding_time, that is set to the
timestamp of the packet-id that the agent should forward
next. When the agent obtains a correct packet, it checks its
timestamp. If the timestamp matches the forwarding_time,
the packet is forwarded and the forwarding_time is set to
the timestamp of the next id. Otherwise the packet is kept in
an ordered list until the forwarding_time matches its times-
tamps. The forwarding_time is also updated whenever an
s-packet times out.

4. COMBINING ALGORITHM
How should one combine the information from multiple

corrupted receptions in order to maximize the chances of
recovering a clean packet? For both uplink and downlink,
the combining algorithm is presented with multiple s-packets
that correspond to the same original transmission. None of
these s-packets is sufficient on its own to recover the original
transmission. Yet, because these are s-packets, they carry
SVs for each bit, which give the combining algorithm a hint
about the noise level in that bit.

Say that the combiner is presented with 3 s-packets. Re-
call that a positive SV means “1”, a negative SV means “0”,
and that the magnitude of the SV refers to the confidence
that the physical layer has in the decision. Let the SV corre-
sponding to the ith bit in these s-packets take the values: 0.3,
−0.1 and −0.2. How does the combining algorithm decide
whether the ith bit is “0” or “1”?

The most straightforward approach would take the max-
imum corresponding SV since it is the reception with most
confidence. Thus, in the above example, one would say that
bit i is a “1” because the reception with the highest confi-
dence (i.e., 0.3) has mapped it to“1”. But is this the best an-
swer? Clearly, there are other approaches that look equally
good. For example, one may resort to a majority vote. In this
case, two receptions map this bit to “0” (−0.15 and −0.2)
whereas one reception maps it to “1” (one positive value of
0.3). Thus, a majority vote would decide that the bit should
be “0”, which is the opposite of the previous answer.

There are other approaches too, such as comparing the
sum of the positive values to the sum of the negative values,
or comparing the sum of the squares of the positive values
to the sum of the squares of the negative values, etc. We
would like to pick the combining strategy that maximizes
the recovery probability.

We analyze the packet recovery probability and adopt a
combining strategy that maximizes the likelihood of recov-
ering a packet. Our strategy uses the sum of SVs weighted
by the noise variance at their corresponding AP. It is based
on the following lemma, which gives the optimal decision
assuming additive Gaussian white noise (AGWN).

Lemma 4.1. Let y1, . . . , yk be SVs that correspond to mul-
tiple receptions of the same bit over different AWGN chan-
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nels. To maximize the recovery probability, one should map
the bit to “0” or “1” according to the following rule:

if
X

i

yi

σ2
i

≥ 0 then the bit is “1”, otherwise it is a “0”,

where σ2
i is the noise variance in the i th AWGN channel.

The proof of the lemma is in the appendix. We also note
that though the above lemma focuses on modulation sys-
tems where a symbol is a single bit, the appendix shows a
generalized form that applies to larger symbol size.

We note the following points.

• Straightforward approaches for combining multiple recep-
tions including taking the SV with the highest confidence
or doing a majority vote are suboptimal.

• One should not treat all receptions equally. This is partic-
ularly important for the uplink where different receptions
traverse a significantly different wireless channel. For ex-
ample, the wireless transmitter might have a line of sight
to one of the access points, resulting in lower noise vari-
ability in this channel, and thus one should trust this chan-
nel more. One should not think that the more receptions
she/he has the lower the error will be. Including physical
information from APs with highly variable channels (i.e.,
large σ2) without accounting for that variability decreases
the overall performance.

• Lemma 4.1 is similar to maximal ratio combining [7] but
since the SVs are normalized by the physical layer, there
is no need to multiply by the mean strength of the signal.
Another difference is that in SOFT a combined packet has
to pass the 802.11 checksum.

• The decision rule above requires the noise variance, σ2
i ,

on each channel. We compute this value by looking at the
variance in the received signal, as explained in §6.

• The result in Lemma 4.1 assumes an AWGN model. The
accuracy of this assumption depends on the environment
and the modulation scheme (e.g., our implementation uses
GMSK modulation, in which case the SVs are not Gaus-
sian). Experimental results in §9, however, show that the
decision strategy advocated by Lemma 4.1 is superior to
other strategies in practice.

5. DIRECT SEQUENCE SPREAD
SPECTRUM

802.11b networks use Direct Sequence Spread Spectrum
(DSSS). Each bit in a packet is mapped to a multi-bit code-
word before transmission. This is achieved by multiplying
the bit value by a pseudo-random sequence. For example,
we can map a “1” bit to “11100010010” and a “0” bit to
“00011101101”. The bits in a codeword are called chips, and
the process of mapping a logical bit to a codeword is called
spreading. The length and values of the codewords used in
802.11b vary depending on the bit rate. In DSSS, an error
has to change many chips in a codeword before it causes an
error in mapping a received codeword to the correct logical
bit.

A simplistic extension of SOFT to DSSS would apply the
combining algorithm before DSSS despreading. In particu-
lar, the APs would communicate a soft value for each chip
in a received codeword. The combining algorithm in §4 is
used to assign a 0-1 value to each chip. We then perform

despreading, i.e., we map the corrected chips to the code-
words corresponding to the “0” and “1” bits in the packet.
Though this approach works, it sends a soft value for each
received chip, consuming a significant amount of Ethernet
throughput. It would be better if we can send a single SV
per codeword, (i.e., one SV per logical bit).

SOFT performs DSSS despreading in the physical layer,
and exposes a single SV for each DSSS codeword, i.e., a
single SV for each logical bit in a packet. As a result, it
keeps a clean abstraction between the physical layer and
higher layers. Also, this significantly reduces the overhead
of communicating SVs over the wired Ethernet.

But can we use a single SV per codeword and still achieve
optimal combining (for the AWGN model)? First, we com-
pute the optimal combining strategy for DSSS. Say that we
have k s-packets corresponding to the same data packet.
Let us focus on the i th codeword in these s-packets. Let
each codeword contain m chips. In this context, a soft
codeword (s-codeword) is a sequence of m SVs, i.e., �yi =
(y1, y2, . . . , ym ). The following lemma gives the optimal com-
bining strategy for DSSS modulation and is proved in the
appendix.

Lemma 5.1. Let �y1, . . . , �yk be multiple s-codewords that
correspond to the same codeword transmitted over different

AWGN channels. Let �x1 = (x1
1 , . . . , x1

m ) be the codeword cor-

responding to logical “1” and �x0 = (x0
1 , . . . , x0

m ) the codeword
corresponding to a logical “0”. The following strategy maxi-
mizes the recovery probability:

if
kX
i

mX
j

yij (x
1
j − x0

j )

σ2
i

≥ 0, then “1”, otherwise “0”,

where σ2
i is the variance in the i th AWGN channel.

However, we do not want to send over the Ethernet a
whole vector of SVs for each codeword. We want the phys-
ical layer to compute for each codeword a single SV that is
sufficient for optimal combining. Lemma 5.1 shows that this
is possible. In Lemma 5.1, the sum over j can be done by
the physical layer itself, whereas the sum over i can be done
by the combining agent. Said differently, for codeword i , the
physical layer exposes a single SV Yi =

P
j yij (x

1
j −x0

j ). The
combining agent then uses the same rule for both DSSS and
non-DSSS combining:

if
kX
i

Yi

σ2
i

≥ 0, then “1”, otherwise “0”.

6. ESTIMATING THE NOISE VARIANCE
In order to compare the soft values observed at different

receivers, we require the corresponding σ2
i of the channels.

In SOFT, the physical layer estimates a channel’s variance
experimentally using the empirical distribution of the SVs
before quantization. The variance is passed to the higher
layer in each s-packet.

For the i th AWGN channel, the SV value of a bit can be
expressed as

yi = hx + ni ,

where ni is a white Gaussian noise, h is the channel attenua-
tion, and x = −1 for a “0” bit and x = +1 for a“1” bit. Thus,
conditioned on the bit value, yi is also a Gaussian variable
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Figure 2: Soft Value Distribution: A typical distribution of
the soft values seen in our testbed. The two modes correspond to
“0” and “1” bits.

with the same variance as ni . Thus, we estimate the variance
in ni using the variance in the yi ’s.

Note that the soft values have the same distribution as the
ni ’s only when we fix the value of the transmitted bit (i.e., a
fixed x in the equation above). In general we cannot tell for
sure at an AP which received SV corresponds to a “0” and
which corresponds to a“1”. But because the vast majority of
soft values already correspond to correctly decodable bits,
the statistical variance of the absolute value of the soft values
is a good estimate for σ2

i . We compute this for every packet
by using all the soft values from it.

Finally, Figure 2 shows the soft values distribution (i.e.,
the yi ’s) at a particular AP in our testbed. Clearly, the dis-
tribution is not Gaussian. However, our results in §9 show
that the Gaussian approximation is quite effective.

7. REDUCING OVERHEAD
In the uplink case, SOFT transfers the s-packets from the

APs to the combining agent over the wired Ethernet. We
leverage the much higher wired Ethernet bandwidth to im-
prove the scarce wireless throughput. The increase in the
consumed Ethernet bandwidth however is an overhead of
the system. We note that in a typical operation environ-
ment (e.g., university campus), Ethernet throughput is an
order of magnitude larger than WLAN throughput. Further-
more, though wireless throughput is increasing at a steady
speed, it is likely that the difference between Ethernet and
WLAN throughput will continue to hold; 10 Gb/s Ethernet
(10GbE) is already on the market and 100 Gb/s Ethernet
(100GbE) is presently under development by the IEEE [1].

Despite the big difference between Ethernet’s and
WLAN’s throughput, it is important to keep SOFT’s over-
head bounded. The wired bandwidth consumed by trans-
ferring s-packets depends on how we express an SV. If an
SV is expressed as a 16-bit number, then each packet will
be amplified 16 times. To reduce the overhead, we need to
quantize the SVs. Optimal quantization depends on the σ2

of the channel. That is, for a particular distribution of SVs,
one needs to integrate the total area and divide into 2k bins
where k is the number of bits used to express each SV.
In practice, however, we found that a uniform quantization
works equally well.

Thus, our quantization algorithm works as follows. It picks
a constant cutoff for all SVs across all experiments. The cut-
off value depends on the modulation scheme and thus should
be calibrated for each 802.11 bit rate. Values above the cut-
off are reduced to the cutoff value. Every SV is expressed
using 3 bits, one for the sign and 2 bits for the magnitude.

Mueller & Muller
Timing Recovery

Match Filter
h[n]

Slicer
(Decision Device)

>
< 0

... decoded
bits

match
values

Figure 3: The block diagram of the different components
in the receiver module. The match values output by the match
filter in the figure correspond to the soft values used in our algo-
rithms.

Though this still consumes Ethernet bandwidth, it keeps the
overhead within practical limits.

8. IMPLEMENTATION
This section describes our SOFT implementation.

8.1 Hardware and Software Environment
We have implemented a prototype of SOFT using Soft-

ware Defined Radios (SDR). SDRs implement all the signal
processing components (source coding, modulation, clock re-
covery, etc.) of a wireless communication system entirely in
software. The hardware is a simple radio frequency (RF)
frontend, which acts as an interface to the wireless channel.
The RF frontend converts the signal generated by the SDR
from digital to analog and transmits it on the wireless chan-
nel. At the receiver, the base-band signal is converted from
analog to digital and passed to the SDR software. Thus,
SDRs expose the raw signal to software manipulation and
thus present an opportunity to exploit information tradi-
tionally available only at the physical layer.

We use the Universal Software Radio Peripheral
(USRP) [14] as our RF frontend. USRP is a generic RF fron-
tend developed specifically for the GNU Radio SDR. The
software for the signal processing blocks is from the open
source GNURadio project [6]. We use the default GNURa-
dio configuration,5 which results in a bit rate of 500kb/s.
The packet consists of a 32-bit preamble, a 1500-byte pay-
load, 32-bit CRC.

8.2 Implementation Details
On the sending side, the network interface pushes the

packets to the GNU software blocks with no modifications.
On the receiving side, the packet is detected and demodu-
lated using the GNURadio software. Fig. 3 shows the block
diagram of the components in the GNURadio receiver. The
signal is first passed through a clock recovery module, which
ensures that the optimum sampling time is found. The out-
put of the clock recovery is passed through a matched fil-
ter which outputs the soft value we use in our algorithms.
Soft value computation depends on the modulation scheme
used. But the basic intuition behind all matched filters is
the same. They integrate the received signal energy so that
the zero-mean gaussian noise is cancelled out and output a
single float value which is the soft value. This soft value is
now passed to a decision device that estimates what bit was
transmitted depending on the sign of the soft value.

We use the output of the match filter as our SVs as de-
scribed in §3.1. This value is a 32-bit float, which we quan-
tize according to the algorithm in §7, and pass to SOFT.
Our SOFT implementation matches the description in §3.
5DAC Rate: 128e6 samples/s, Interpolation Rate: 128, 2
samples/symbol, 1 bit/symbol.
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Figure 4: Testbed Topology. The figure shows the testing en-
vironment. The dots mark the locations of the GNURadio nodes.

The modulation scheme we use in our implementation is
Gaussian Minimum Shift Keying (GMSK ). But the ideas we
develop in this paper are applicable independent of the mod-
ulation scheme. The main reason for using GMSK here is
that the GNU radio project has a mature GMSK implemen-
tation. At the time of submission, GNU implementations
of other modulation techniques were either non-existent or
buggy. GMSK is used in GSM, which is a widely used cell-
phone standard. It has very good bit-error properties, has
a simple demodulation algorithm and excellent spectral ef-
ficiency.

We have recently implemented SOFT with Differential Bi-
nary Phase Shift Keying (DBPSK), which is the modulation
scheme used in 802.11 to send at 1 Mb/s. Our results are
quantitatively and qualitatively similar to those obtained
with GMSK. We report some of these results in §9.10.

9. EXPERIMENTAL RESULTS
We evaluate SOFT in a 13-node software radio testbed.

The topology is shown in Figure 4. Each node is a commod-
ity PC connected to a USRP GNU radio [14].

SOFT’s combining algorithm works the same whether the
s-packets are the result of overhearing at multiple APs or
retransmissions at a single wireless receiver. Thus, we use
the uplink experiments to explore the various aspects of
SOFT and its combining strategy and revert to the downlink
experiments to investigate retransmissions under SOFT. In
SOFT, the uplink also combines faulty s-packets with their
potentially faulty retransmissions to recover a clean packet.
Our experiments however do not perform retransmissions on
the uplink. This disentangles the gains due to space diversity
from those due to time diversity.

9.1 Setup
In each experiment, we pick three nodes as our access

points (APs), and randomly vary the sender among the
nodes in the testbed. Each randomly chosen sender trans-
mits 500 packets, where packet size is 1500B. One of the
three APs in each experiment is designated as the master
AP and runs the combining agent. The other APs send their
s-packets to the master AP over the wired Ethernet, which
combines information across s-packets to reconstruct a clean
packet. In uplink experiments, retransmissions are turned
off. Thus, the gain in the uplink experiments is solely due
to space diversity.

For the downlink experiments, we randomly pick a sender-
receiver pair and transfer 500 packets between them. Here,
we focus on the gains due to time diversity, i.e., reductions
in loss rate due to SOFT’s ability to recover clean packets by
combining faulty transmissions with faulty retransmissions
of the same packet.

It should be noted that because GNU Radios perform all
processing in software, many of the timing details of 802.11
cannot be implemented. This has two implications for our
setup. In particular, unless one changes the FPGA code, one
cannot consistently send synchronous 802.11 acks on time.
We emulate 802.11 acks by sending the ack packet imme-
diately after the data packet, as fast as the SDR system
permits. Second, with no proper timing control, one cannot
implement 802.11’s backoff algorithm. Thus, we do not have
a mechanism to avoid collisions. Since we run only one sender
at any time, our senders do not collide with each other. They
may however be affected by interfering signals in the same
band. We try to run our experiments at night when wire-
less activities in our lab are limited. Note that although the
errors resulting from interfering signals reduce the delivery
rates, they do not bias the results towards any particular
protocol, among those compared. The compared protocols
process the same reception data, each with its approach for
recovering correct packets.

9.2 Compared Approaches
We compare the following approaches

• SOFT: This approach adopts the architecture in §3 and
uses the combining strategies of Lemmas 4.1 and 5.1.

• MAX Confidence: This is similar to SOFT but with
a max-confidence combining strategy. Specifically, when
combining multiple SVs that correspond to the same bit,
the bit is mapped to “0” or “1” according to the SV with
the maximum absolute value.

• Majority Vote: This is also similar to SOFT but it uses a
majority vote to combine multiple receptions. Specifically,
each bit is assigned the value agreed on by the majority
of the receptions (i.e., the majority of the APs).

• Current Approach: This approach is similar to the cur-
rent WLAN scenario which does not allow the APs to
cooperate, and does not combine bits across different re-
ceptions.

• MRD: This is a prior cooperative scheme for packet re-
covery [17]. MRD does not use physical layer information.
It works as follows. It divides each packet into blocks. For
each block, it assumes that at least one of the APs has cor-
rectly received the bit values for that block. It attempts to
recover a faulty packet by trying every version received for
each block, and checking whether such combined packet
passes the 802.11 checksum. MRD computational cost is
exponential in the number of blocks. Thus, in order to
be computationally feasible, MRD recommends using 6
blocks per packet [17], which is what we use in our exper-
iments.

9.3 Metrics
We use the following metrics:

• Packet Delivery Rate: This is the fraction of transmitted
packets that the WLAN correctly delivers to the destina-
tion. For the current approach, the delivery rate is com-
puted as the fraction of uncorrupted packets received at
the best AP, i.e., the one with the lowest loss rate for the
particular sender. For cooperative approaches, the deliv-
ery rate is the fraction of packets that were successfully
recovered either immediately at the radio receiver, or af-
ter running the combining algorithm. The delivery rate is
computed for each approach without retransmissions.
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Figure 5: CDF of Packet Delivery Rates. SOFT significantly
improves the packet delivery rate in lossy and low-coverage net-
works. While the mean delivery rate in the current approach and
MRD is less than 7%, the mean SOFT delivery rate is as high as
62%. Retransmissions are turned off in these experiments, thus
the improvement in delivery rate is mainly due to the use of soft
values and the effect of spatial diversity.
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Figure 6: Comparing Delivery Rates for Increased MRD
Blocks. The figure plots the delivery rate of one sender as a
function of increased MRD blocks. SOFT’s delivery rate for this
sender is about 78%. MRD cannot match SOFT’s performance
even with hundreds of blocks. In practice, it is infeasible to have
such many blocks both because of computational overhead and
the checksum losing its error detection capability.

• Number of Retransmissions: This is the number of times
the sender had to retransmit the same packet to ensure
errorless delivery to higher layers. Retransmissions are ac-
tivated only during downlink experiments. As such, the
uplink experiments serve to evaluate the gains due to spa-
tial diversity. The downlink experiments, where no spatial
diversity exists, are used to evaluate the gains due to time
diversity.

9.4 Importance of Cooperation & Soft Values
We are interested in quantifying the impact of coopera-

tion on the reliability of WLANs. In particular, how much
improvement in loss rate should one expect from combining
packets across APs? Further, is there a significant benefit
from obtaining physical layer information or is a higher-layer
technique like MRD sufficient?

To answer these questions we perform 100 runs of the ex-
periment described in §9.1. Specifically, each time we pick
three APs from the nodes in the testbed and a random
sender, which transmits 500 packets. We compute the packet
delivery rate for SOFT, the current approach, and MRD.
Figure 5 compares the CDFs of the deliver rates for the
three schemes.

The figure shows the importance of using soft values in
lossy and low-coverage networks. The mean delivery rate in
the current approach is less than 7%. Further, MRD does not
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Figure 7: CDFs of Delivery Rates for Different Com-
bining Strategies. The figure compares the delivery rate un-
der three combining strategies: SOFT, Max-Confidence, and
Majority-Vote. It shows that SOFT’s weighted-sum strategy per-
forms significantly better than the others, which supports our
analytical results.

help much when delivery rates are considerably low. MRD
can recover only from a handful of bit errors. In contrast,
SOFT’s mean delivery rate is 62%, which is about an order
of magnitude better than both the current approach and
MRD.

We also check whether having a larger number of blocks
improves MRD’s performance. In Figure 6, we focus on a
specific sender and a specific AP set. We vary the num-
ber of blocks used by MRD. Note that MRD’s computa-
tional complexity increases exponentially with the number
of blocks. Computing the CRC for a large number of blocks
is infeasible in practice. But since we know the transmitted
packet content, we can check whether MRD recovers a cor-
rect packet without incurring the exponential cost. To do so,
we compare the received blocks directly against the trans-
mitted ones. Figure 6 shows that even if it would be prac-
tical to increase the number of MRD blocks to 200, SOFT
still does better. This further emphasizes the importance of
exposing the information available to the physical layer to
higher layers.

9.5 The Role of the Combining Rule
We also want to investigate how the delivery rate changes

with the strategy used to recover packets from multiple soft
copies. In particular, Lemma 4.1 advocates using a weighted
sum of the SVs. But the lemma assumes an AWGN model.
Would the result of this lemma hold in practice?

Figure 7 compares the CDFs of packet delivery rates for
various combining rules. The experiments are run using the
setup described in §9.1 and the CDFs are computed over
all such runs. The figure shows that SOFT’s weighted-sum
strategy performs better than taking a majority vote or us-
ing the bit value with the maximum confidence. Thus, the
experimental results support the analysis in §4.

Also, note that a majority vote works better than trust-
ing the largest SV. This is particularly true at low delivery
rates. In this case, all APs are receiving very poor signals.
The differences in their SVs are close to the noise level. Tak-
ing the max SV allows a biased SV to deviate the results,
whereas taking a majority vote increases resilience.

9.6 Impact of Noise Variance
Our analysis highlights the importance of accounting for

the noise variance when combining SVs received from differ-
ent APs. Here, we experimentally check how normalizing by
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Figure 8: CDF of Delivery Rates with and without Nor-
malization by the Noise Variance. The figure shows that
normalizing the SVs by the noise variance improves the delivery
rates, and that the normalization is particularly important for
moderate to moderately-high delivery rates.
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Figure 9: CDFs of Delivery Rates in Low Loss Environ-
ments. We use the same power as before but with DSSS, which
improves the delivery rates for both SOFT and the current ap-
proach. For these environments, SOFT eliminates all losses for
the vast majority of the runs.

the noise variance affects delivery rates. The noise variance
is computed at each AP experimentally using its received
data, as described in §6.

Figure 8 shows that accounting for the noise variance can
improve the delivery rate by about 14%. It is interesting to
note that the noise variance is particularly important when
the delivery rates are neither too low nor too high. This
is because at very low delivery rates, all APs have highly
noisy channels such that the difference in their noise level
does not matter. At very high delivery rates at least one
and sometimes two APs have very good channels and can
still recover the signal despite the bias introduced by the
more challenged AP. This is particularly true because SOFT
does not try to combine a packet that passes the checksum
test, which prevents a highly noisy AP from corrupting a
correctly received packet. It is at moderate delivery rates
when a biased AP produces destructive effect, polluting the
SVs of the two not very confident APs.

9.7 SOFT With Low Loss Rates
This section shows that SOFT’s benefits extend to scenar-

ios with low loss rates. We repeat the experiments described
in §9.1with DSSS. We compare SOFT’s delivery rates with
the delivery rates of the current approach. In these experi-
ments, we spread each logical bit in a packet but keep the
per-chip power at the same level as before. This helps il-
lustrate the behavior of SOFT at low loss rates and under
DSSS.6

6The bandwidth of the USRP signal is limited to at most
4MHz. Thus, our DSSS implementation does not use wider
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the Downlink. SOFT correctly recovers 94% of the packets with
less than one retransmission. The current approach needs up to
18 retransmissions to achieve the same delivery rate.
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Figure 11: Impact of Quantization on the Delivery Rates.
The figure shows two results: 1) Using 3 bits to express the value
of the SVs is as good as using a 16-bit float. 2) the quantization
is fairly resilient to the choice of cutoff value for any value larger
than 0.4.

In comparison with Figure 5, Figure 9 shows a significant
improvement in the overall loss rate for both SOFT and the
current approach. SOFT, however, still significantly outper-
forms the current approach. With SOFT, 97% of all runs
show perfect delivery rates, as opposed to only 72% with
the current approach. Thus, for environments with good de-
livery rates, SOFT eliminates most of the residual losses.

9.8 Retransmissions on the Downlink
We also evaluate SOFT’s performance on the downlink.

In this case, SOFT reconstructs a faulty packet by combin-
ing multiple receptions at the same receiver. We want to
compute the number of retransmissions required to recover
a correct packet, with and without SOFT. We perform the
following experiment. We pick a random sender-receiver pair
from the nodes in testbed. The sender transmits 500 differ-
ent packets. In contrast, to prior experiments, the sender
retransmits every packet until the receiver recovers a cor-
rect copy of the packet. We repeat the same experiment for
30 sender receiver pairs.

Figure 10 shows a CDF of the number of retransmissions
per packet, taken over all packets and all sender-receiver
pairs. The figure shows that in our testbed, only 33% of the
packets on the downlink are received with no need for re-
transmission (the value for #Retransmissions = 0). SOFT

bandwidth. Rather, it serves as a check that a single SV per
codeword is sufficient, and that SOFT performs well in high
SNR environments.
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Figure 12: At What BER Does SOFT Help? The figure
shows that SOFT is particularly effective when the bit error rate
(BER) is larger than 0.0005. This indicates that SOFT would help
in eliminating dead spots and dealing with low coverage. Further,
the results in this figure are for DBPSK modulation, which shows
that SOFT works with various modulation schemes.

cannot improve this number on the downlink because there
is no cooperation. But SOFT significantly improves the over-
all performance of the downlink. In particular, 94% of the
packets are correctly received after one retransmission. In
contrast, the current approach needs up to 18 retransmis-
sions to achieve the same reliability.

9.9 Impact of Quantization
To reduce the overhead over the wired Ethernet, we quan-

tize the SV values and express them using only 3 bits. We
want to ensure that by doing so we are not losing too much
in term of delivery rates. Thus, we plot the average delivery
rate of 30 random runs for various quantization parameters.

Figure 11 shows two important results. First, our ap-
proach is fairly resilient to the choice of the cutoff for values
in the range [0.4, 0.8]. Thus, despite that the SVs collected
at different APs have different variance (i.e., spread), we can
still use the same cutoff value across all APs. Second, it is
sufficient to express the SVs using 3 bits, one for the sign
and two bits for the magnitude. This reduces the size of an
s-packet and significantly reduces the wired overhead.

9.10 At What BER Does SOFT Help?
Our last result serves two purposes. First, it illustrates

the range of bit error rates (BER) where SOFT improves
performance. Second, it shows that SOFT extends to various
modulation schemes.

Figure 12 shows the performance of the current approach,
MDR, and SOFT as BER increases. To plot this figure we
use 130 different runs. In each run a sender broadcasts 500
packets, which are collected at 3 APs. We vary the trans-
mission power from one run to another to cover a range
of BER. For each run, we compute the BER at the best
AP, and the packet delivery rate for the current approach,
MRD, and SOFT. We note that these results are collected
using DBPSK modulation.

Figure 12 shows that SOFT is particularly beneficial when
the BER is larger than 0.0005. This indicates that SOFT
can help in eliminating dead spots and improving wireless
coverage. Further the DBPSK results are in alignment with
the results obtained using GMSK, indicating that SOFT
works with various modulation schemes.

10. CONCLUSION
Today’s wireless networks have largely adopted the ab-

stractions of wired networks, despite the fact that they come

with unique challenges. Lossy links and poor connectivity
are two main problems in wireless networks that have direct
impact on application performance and user satisfaction.
Current approaches to address these problems have mostly
been inadequate. However, wireless media provide intrinsic
resilience due to their spatial and temporal diversity, and
this presents opportunities to address their challenges with
novel solutions.

Computer networks have traditionally been designed with
narrow interfaces between layers in the stack. In this paper,
we have presented SOFT, a scheme that increases the reli-
ability of wireless networks by adopting a more informative
interface between the physical and higher layers, and using
confidence values from the physical layer to cooperatively re-
construct packets at the data layer. Our experimental results
demonstrate that SOFT improves the mean packet delivery
rate and reduces the required number of retransmissions by
an order of magnitude.
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APPENDIX
Proof of Lemma 4.1
Let �y = (y1, y2, ...yk ) be soft values associated with a partic-
ular bit. Given a transmitted bit value x , the y ’s are condi-
tionally independent, and correspond to multiple receptions
of the same bit over different independent AWGN channels
ni with μ = 0 and σ2

i . I.e. yi = hx + ni , where h is a con-
stant, and x = −1 for a “0” bit or x = 1 for a “1”. We model
h as a constant independent of the channel because our ex-
perimental results show that with the AGC on, h becomes
irrelevant.

Let H0 be the hypothesis that x = −1 and let H1 be the
hypothesis that x = 1. Note that the two hypotheses are

equally likely a priori, i.e., before a reception the likelihood
of a “0” is the same as the likelihood of a “1”.

Here, we consider the likelihood functions:

H0 : P�y|H (�y |H0) =
Y
i

1p
2πσ2

i

e
−(yi−(−h))2

2σ2
i
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H0
≷
H1

P(�y |H1)
P(H1)

P(�y)

P�y|H (�y|H0)
H0
≷
H1

P�y|H (�y|H1)

ln

 Y
i

1p
2πσ2

i

e
−(yi−(−h))2

2σ2
i

!
H0
≷
H1

ln

 Y
i

1p
2πσ2

i

e
−(yi−h)2

2σ2
i

!

X
i

−(yi − (−h))2

2σ2
i

H0
≷
H1

X
i

−(yi − h)2

2σ2
i

X
i

− yi

σ2
i

H0
≷
H1

X
i

yi

σ2
i

The above result is equivalent to:

if
X

i

yi

σ2
i

≥ 0 then it is “1” otherwise “0”,

where σ2
i is the variance in the i th AWGN channel.

Proof of Lemma 5.1

The proof of Lemma 5.1 is again fairly similar to that of
Lemma 4.1. But here, instead of bits we replace them with
the codeword which represents the bits “1” or “0” respec-
tively. Thus,

P�y|H (�y |H0)
H0
≷
H1

P�y|H (�y |H1)

These probabilities can be computed as follows:

P�y|H (�y|H0) = ln

0
@Y

i

Y
j

1p
2πσ2

i

e

−(yij −(hx0j ))2

2σ2
i

1
A

P�y|H (�y|H1) = ln

0
@Y

i

Y
j

1p
2πσ2

i

e

−(yij −(hx1j ))2

2σ2
i

1
A
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Thus, after substitution, we have:

X
i

X
j

−(yij − hx0
j )2

2σ2
i

H0
≷
H1

X
i

X
j

−(yij − hx1
j )2

2σ2
i

X
i

X
j

yij x
0
j

σ2
i

H0
≷
H1

X
i

X
j

yij x
1
j

σ2
i

The above result is equivalent to:

if

kX
i

mX
j

yij (x
1
j − x0

j )

σ2
i

≥ 0 the logical bit is “1”, else “0”,

where σ2
i is the variance in the i th AWGN channel.

Generalizing Lemma 4.1 to Larger Symbols

Lemma .1. Let y1, . . . , yk be the output of the match fil-
ter that correspond to multiple receptions of the same symbol
over different AWGN channels. Let x1, . . . , xm be the possi-
ble value for the transmitted symbol, and h a constant at-
tenuation. To maximize the symbol recovery probability, one
should map the received symbol to a possible value xj accord-
ing to the following rule:

arg min
xj

X
j

||yi − hxj ||2
σ2

i

where ||.|| is the Euclidian norm and σ2
i is the variance in

the i th AWGN channel.

The proof is similar to that of Lemma 4.1. The only differ-
ence is that we replace bits with the symbols in our constel-
lation.
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